-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
142 lines (122 loc) · 5.89 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import webdataset as wds
import os
import torch
from tqdm import tqdm
from io import BytesIO
from PIL import Image
from torch.utils.data import Dataset
class DinoClipDataset(Dataset):
def __init__(self, features_file, features_name='dino_features', text_features='ann_feats', load_attn_maps=False, is_wds=False):
if is_wds:
self.__load_wds_dataset(features_file, features_name, text_features, load_attn_maps)
else:
self.__load_pth_dataset(features_file, features_name, text_features, load_attn_maps)
def __getitem__(self, idx):
annotation = self.data[idx]['annotation']
image = self.data[idx]['image']
metadata = {
'annotation_id': self.data[idx]['annotation_id'],
'image_id': self.data[idx]['image_id']
}
to_ret = {
'annotation': annotation,
'image': image,
'metadata': metadata,
}
if 'self_attn_maps' in self.data[idx]:
to_ret['self_attn_maps'] = self.data[idx]['self_attn_maps']
to_ret['dino_features'] = self.data[idx]['dino_features']
if 'text_input_mask' in self.data[idx]:
to_ret['text_input_mask'] = self.data[idx]['text_input_mask']
if 'text_argmax' in self.data[idx]:
to_ret['text_argmax'] = self.data[idx]['text_argmax']
return to_ret
def __len__(self):
return len(self.data)
def __load_pth_dataset(self, features_file, features_name='dino_features', text_features='ann_feats', load_attn_maps=False):
print("Loading dataset...")
data = torch.load(features_file, map_location='cpu')
print("Dataset loaded!")
images = {imm['id']: imm for imm in data['images']}
del data['images']
self.data = {}
for idx, ann in enumerate(data['annotations']):
ann_id = ann['id']
imm_id = ann['image_id']
self.data[idx] = {}
if text_features != 'clip_txt_out_tokens_avg':
self.data[idx]['annotation'] = ann[text_features]
else:
mask = ann['text_input_mask']
mask[mask.sum() - 1] = False # excluding end of sequence
mask[0] = False # excluding CLS token
self.data[idx]['annotation'] = ann['clip_txt_out_tokens'][mask].mean(dim=0)
if text_features == 'clip_second_last_out':
self.data[idx]['text_argmax'] = ann['text_argmax']
self.data[idx]['image'] = images[imm_id][features_name]
if load_attn_maps:
self.data[idx]['self_attn_maps'] = images[imm_id]['self_attn_maps']
self.data[idx]['dino_features'] = images[imm_id]['dino_features']
if text_features == 'clip_txt_out_tokens':
self.data[idx]['text_input_mask'] = ann['text_input_mask']
self.data[idx]['image_id'] = imm_id
self.data[idx]['annotation_id'] = ann_id
def __load_wds_dataset(self, features_file, features_name='dino_features', text_features='ann_feats', load_attn_maps=False):
print("Loading dataset...")
def my_decoder(key, value):
if not key.endswith(".pth"):
return None
return torch.load(BytesIO(value))
dataset = wds.WebDataset(features_file).decode(my_decoder)
self.data = {}
for idx, obj in enumerate(dataset):
self.data[idx] = {}
if text_features != 'clip_txt_out_tokens_avg':
self.data[idx]['annotation'] = obj['pth'][text_features]
else:
mask = obj['pth']['text_input_mask']
mask[mask.sum() - 1] = False # excluding end of sequence
mask[0] = False # excluding CLS token
self.data[idx]['annotation'] = obj['pth']['clip_txt_out_tokens'][mask].mean(dim=0)
self.data[idx]['image'] = obj['pth'][features_name]
if load_attn_maps:
self.data[idx]['self_attn_maps'] = obj['pth']['self_attn_maps']
self.data[idx]['dino_features'] = obj['pth']['dino_features']
if text_features == 'clip_txt_out_tokens':
self.data[idx]['text_input_mask'] = obj['pth']['text_input_mask']
self.data[idx]['image_id'] = obj['pth']['image_id']
self.data[idx]['annotation_id'] = obj['pth']['id']
print("Dataset loaded!")
class COCOCaptions(Dataset):
def __init__(self, ann_path, data_dir, split="train", image_transform=None, text_transform=None, device="cuda"):
self.data = torch.load(ann_path)
self.data_dir = data_dir
self.split = split
images = {imm['id']: imm for imm in self.data['images']}
self.samples = []
for ann in self.data['annotations']:
if split not in images[ann['image_id']]['file_name']:
continue
self.samples.append({
'annotation': ann['caption'],
'image_path': images[ann['image_id']]['file_name']
})
self.n_imgs = len(self.samples)
self.image_transform = image_transform
self.text_transform = text_transform
self.device = device
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
annotation = self.samples[idx]['annotation']
image_path = self.samples[idx]['image_path']
image = Image.open(os.path.join(self.data_dir, image_path))
if image.mode == 'L':
image = image.convert('RGB')
if self.image_transform:
image = self.image_transform(image)
if self.text_transform:
annotation = self.text_transform(annotation)[0]
return {"image": image, "annotation": annotation}
def __len__(self):
return self.n_imgs