-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
754 lines (631 loc) · 38.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
import clip
import yaml
import torch
import torch.nn as nn
import torch.nn.functional as F
from src.hooks import get_self_attention, process_self_attention, feats
class VisualProjectionLayer(nn.Module):
"""
Creates a projection layer on top of the DINO encoder.
The forward method calculate the similarity between the projected DINO token and the CLIP textual CLS token.
"""
def __init__(self, act=nn.Tanh(), hidden_layer=False, cosine=True, hidden_embed_dim=None, dino_embed_dim=1024, clip_embed_dim=512):
# mlp_dims list of mlp dimensions
super().__init__()
if hidden_embed_dim is None:
hidden_embed_dim = clip_embed_dim
self.linear_layer = nn.Linear(dino_embed_dim, hidden_embed_dim)
if hidden_layer:
self.linear_layer2 = nn.Linear(hidden_embed_dim, clip_embed_dim)
self.act = act
self.cosine = cosine
@classmethod
def from_config(cls, config):
if type(config) is str:
# if the configuration is a string, we treat it as a file path
with open(config, 'r') as f:
config = yaml.safe_load(f)['model']
# loading the activation function
act = config.get('act', None)
if act == 'tanh':
act = nn.Tanh()
elif act == 'relu':
act = nn.ReLU()
elif act == 'sigmoid':
act = nn.Sigmoid()
elif act is not None:
raise Exception("Unknown activation function")
model = cls(
act=act,
hidden_layer=config.get('hidden_layer', False),
cosine=config.get('cosine', True),
hidden_embed_dim=config.get('hidden_embed_dim', None) if config.get('hidden_layer', False) else None,
dino_embed_dim=config.get('dino_embed_dim', 1024),
clip_embed_dim=config.get('clip_embed_dim', 512)
)
return model
def forward(self, visual_embedding, textual_embedding, ret_similarity_matrix=True, ret_embeds=False):
visual_embedding = self.project_dino(visual_embedding)
textual_embedding = textual_embedding.float()
if self.cosine:
textual_embedding = F.normalize(textual_embedding, p=2, dim=1)
visual_embedding = F.normalize(visual_embedding, p=2, dim=1)
if ret_embeds:
return textual_embedding, visual_embedding
x = textual_embedding @ visual_embedding.transpose(1, 0)
if not ret_similarity_matrix:
x = x[torch.eye(len(x)) > 0.5] # only diagonal elements
return x
def project_dino(self, visual_embedding):
visual_embedding = visual_embedding.float()
x = self.linear_layer(visual_embedding)
if self.act:
x = self.act(x)
if hasattr(self, 'linear_layer2'):
x = self.linear_layer2(x)
return x
def __len__(self):
return sum(p.numel() for p in self.parameters())
class ProjectionLayer(nn.Module):
"""
Creates a projection layer on top of the CLIP-text encoder.
The forward method calculate the similarity between the DINO CLS token and the projected CLIP textual CLS token.
"""
def __init__(self, act=nn.Tanh(), hidden_layer=False, cosine=True, dino_embed_dim=1024, clip_embed_dim=512, num_attn_head=16, weight_attn_heads=None,
alignment_strategy='max_score', alpha=0.6, keep_cls=False, keep_end_seq=False):
# mlp_dims list of mlp dimensions
super().__init__()
self.num_attn_head = num_attn_head
self.linear_layer = nn.Linear(clip_embed_dim, dino_embed_dim)
if hidden_layer:
hidden_layer = 1 if hidden_layer is True else hidden_layer # ensuring compatibility with old code
# self.linear_layer2 = nn.Linear(dino_embed_dim, dino_embed_dim)
self.hidden_layers = nn.ModuleList([nn.Linear(dino_embed_dim, dino_embed_dim) for _ in range(hidden_layer)])
self.act = act
self.cosine = cosine
self.weight_attn_heads = weight_attn_heads
if weight_attn_heads == 'static':
self.attn_weights = nn.Parameter(torch.rand(self.num_attn_head))
elif weight_attn_heads == 'conditioned':
self.weight_layer1 = nn.Linear(dino_embed_dim, dino_embed_dim)
self.weight_layer2 = nn.Linear(dino_embed_dim, self.num_attn_head)
self.alignment_strategy = alignment_strategy # relevant only if we use disentangled_self_attn
self.keep_cls = keep_cls # relevant only if we use clip_txt_tokens_out
self.keep_end_seq = keep_end_seq # relevant only if we use clip_txt_tokens_out
self.alpha = alpha
@classmethod
def from_config(cls, config):
if type(config) is str:
# if the configuration is a string, we treat it as a file path
with open(config, 'r') as f:
config = yaml.safe_load(f)['model']
# loading the activation function
act = config.get('act', None)
if act == 'tanh':
act = nn.Tanh()
elif act == 'relu':
act = nn.ReLU()
elif act == 'sigmoid':
act = nn.Sigmoid()
elif act is not None:
raise Exception("Unknown activation function")
model = cls(
act=act,
hidden_layer=config.get('hidden_layer', False),
cosine=config.get('cosine', True),
dino_embed_dim=config.get('dino_embed_dim', 1024),
num_attn_head=config.get('num_attn_head', 16),
clip_embed_dim=config.get('clip_embed_dim', 512),
weight_attn_heads=config.get('weight_attn_heads', None),
alignment_strategy=config.get('alignment_strategy', 'max_score'),
alpha=config.get('alpha', 0.6),
keep_cls=config.get('keep_cls', None),
keep_end_seq=config.get('keep_end_seq', None),
)
if config.get('starting_checkpoint', None) is not None:
model.load_state_dict(torch.load(config['starting_checkpoint'], 'cpu'))
return model
def compute_similarity(self, visual_embedding, textual_embedding, text_input_mask=None, return_index=False):
if len(visual_embedding.shape) == 3 or len(textual_embedding.shape) == 3:
# at least one embedding is decomposed: either we have all textual tokens or we have all the attention head tokens
if self.alignment_strategy == 'weighted_avg':
if len(visual_embedding.shape) != 3 or len(textual_embedding.shape) != 2:
raise Exception("Alignment strategy not implemented for this type of embeddings!")
sims = torch.einsum('ik,ijk->ij', textual_embedding, visual_embedding)
sims = sims.softmax(dim=-1)
# in this case, we keep as visual_embedding the averaged token weighted by the text similarities
visual_embedding = (visual_embedding * sims.unsqueeze(dim=-1)).mean(dim=1)
sims = textual_embedding @ visual_embedding.transpose(1, 0)
# in this case we sample the visual embedding from the softmax similarities of attention heads tokens and the textual tokens
elif self.alignment_strategy == 'sampled_attn_map':
if len(visual_embedding.shape) != 3 or len(textual_embedding.shape) != 2:
raise Exception("Alignment strategy not implemented for this type of embeddings!")
sims = torch.einsum('ik,ijk->ij', textual_embedding, visual_embedding)
sims = sims.softmax(dim=-1)
# in this case, we sample from the distribution given byt text2attn-maps similarities the attention map to align
index = torch.multinomial(sims, 1).view(-1, 1, 1).expand(-1, 1, visual_embedding.shape[-1])
visual_embedding = torch.gather(visual_embedding, 1, index).squeeze(1)
sims = textual_embedding @ visual_embedding.transpose(1, 0)
elif self.alignment_strategy == 'max_score':
sims = torch.einsum('ik,ijk->ij', textual_embedding, visual_embedding)
sims = sims.softmax(dim=-1)
index = sims.argmax(dim=-1)
index_reshaped = sims.argmax(dim=-1).view(-1, 1, 1).expand(-1, 1, visual_embedding.shape[-1])
visual_embedding = torch.gather(visual_embedding, 1, index_reshaped).squeeze(1)
sims = textual_embedding @ visual_embedding.transpose(1, 0)
else:
# in this case we construct a similarity matrix between attention head tokens and textual tokens
# we ensure that both the batch embeddings have the same number of dimensions
textual_embedding = textual_embedding.unsqueeze(1) if len(textual_embedding.shape) == 2 else textual_embedding
visual_embedding = visual_embedding.unsqueeze(1) if len(visual_embedding.shape) == 2 else visual_embedding
if textual_embedding.shape[1] > 1:
assert text_input_mask is not None, "If we use all the textual embeddings, we need the input mask"
if not self.keep_end_seq:
# we take the last True value of the mask and we set it to False
text_input_mask[torch.arange(text_input_mask.shape[0]), torch.sum(text_input_mask, dim=1) - 1] = False
if not self.keep_cls:
text_input_mask[:, 0] = False
# do not consider cls and eos tokens
im_set = visual_embedding
s_seq = textual_embedding
im_set_batch = im_set.size(0)
im_set_len = im_set.size(1)
s_seq_batch = s_seq.size(0)
s_seq_len = s_seq.size(1)
im_set = im_set.unsqueeze(1).expand(-1, s_seq_batch, -1, -1) # B x B x S_im x dim
s_seq = s_seq.unsqueeze(0).expand(im_set_batch, -1, -1, -1) # B x B x S_s x dim
alignments = torch.matmul(im_set, s_seq.permute(0, 1, 3, 2)) # B x B x S_im x S_s
# compute mask for the alignments tensor
if text_input_mask is not None:
alignment_mask = text_input_mask.unsqueeze(1).unsqueeze(0).expand(im_set_batch, -1, im_set_len, -1).logical_not()
alignments.masked_fill_(alignment_mask, value=0)
# alignments = F.relu(alignments)
# alignments = F.normalize(alignments,p=2, dim=2)
if self.alignment_strategy == 'sum':
sims = alignments.sum(dim=(2,3))
elif self.alignment_strategy == 'mean':
sims = alignments.mean(dim=(2,3))
elif self.alignment_strategy == 'max-row_sum':
sims = alignments.max(2)[0].sum(2)
elif self.alignment_strategy == 'nucleus-sampling':
max_alignments = alignments.max(2)[0]
sorted_alignments = max_alignments.sort(dim=2, descending=True)[0]
# min-max normalization
mins = sorted_alignments.min(2)[0].unsqueeze(-1).expand(-1, -1, s_seq_len)
maxs = sorted_alignments.max(2)[0].unsqueeze(-1).expand(-1, -1, s_seq_len)
norm_alignments = ((sorted_alignments - mins) / (maxs - mins))
# transform values in percentage
sums = norm_alignments.sum(dim=-1).unsqueeze(-1).expand(-1, -1, s_seq_len)
norm_alignments = norm_alignments / sums
# finding the element indices which surpasses alpha
cumsums = norm_alignments.cumsum(2)
indices = torch.argmax((cumsums > self.alpha).int() + 1, dim=2)
mask = torch.arange(s_seq_len).unsqueeze(0).unsqueeze(0).expand(s_seq_batch, s_seq_batch, s_seq_len).to(indices.device) < indices.unsqueeze(-1).expand(-1, -1, s_seq_len) + 1
relevant_alignments = (sorted_alignments * mask)
sims = relevant_alignments.sum(dim=2)
else:
# default case: dot-product
sims = textual_embedding @ visual_embedding.transpose(1, 0)
if not return_index:
return sims
else:
return sims, index
def forward(self, visual_embedding, textual_embedding, ret_similarity_matrix=True, ret_embeds=False, self_attn_maps=None, cls=None, text_input_mask=None, return_index=False):
if self.weight_attn_heads is not None:
assert self_attn_maps is not None, "In case we have attention maps weights, we have to weight patch tokens mean by the weighted self-attention maps"
visual_embedding = self.get_visual_embed(visual_embedding, self_attn_maps=self_attn_maps, cls=cls)
textual_embedding = self.project_clip_txt(textual_embedding)
if self.cosine:
textual_embedding = F.normalize(textual_embedding, p=2, dim=-1)
visual_embedding = F.normalize(visual_embedding, p=2, dim=-1)
if ret_embeds:
return textual_embedding, visual_embedding
if not return_index:
x = self.compute_similarity(visual_embedding, textual_embedding, text_input_mask, return_index)
else:
x, index = self.compute_similarity(visual_embedding, textual_embedding, text_input_mask, return_index)
if not ret_similarity_matrix:
x = x[torch.eye(len(x)) > 0.5] # only diagonal elements
if not return_index:
return x
else:
return x, index
def get_visual_embed(self, visual_embedding, self_attn_maps=None, cls=None):
if self_attn_maps is not None:
# we weight each attention head to obtain a weighted self-attention map
assert len(visual_embedding.shape) == 3, "In case we have attention maps weights, the visual_embedding should contain patch embeddings, with shape BS x NUM_PATCHES x EMBED_DIM"
if self.weight_attn_heads == 'conditioned':
assert cls is not None, "cls must be setted in case of dinamic attention weighting"
x = self.weight_layer1(cls)
x = self.act(x)
x = self.weight_layer2(x)
normalized_attn_weights = x.softmax(dim=1)
self_attn = (self_attn_maps * normalized_attn_weights.unsqueeze(dim=-1)).mean(dim=1)
else:
normalized_attn_weights = self.attn_weights.softmax(dim=0)
self_attn = (self_attn_maps * normalized_attn_weights.view(1, normalized_attn_weights.shape[0], 1)).mean(dim=1)
self_attn = self_attn.softmax(dim=-1)
# then we perform the weighted mean of patches
visual_embedding = (self_attn.unsqueeze(-1) * visual_embedding).mean(dim=1)
return visual_embedding
def project_clip_txt(self, textual_embedding):
textual_embedding = textual_embedding.float()
x = self.linear_layer(textual_embedding)
if hasattr(self, 'hidden_layers'):
for hidden_layer in self.hidden_layers:
if self.act:
x = self.act(x)
x = hidden_layer(x)
return x
def load_state_dict(self, state_dict, strict=True):
# compatibility with old code
if 'linear_layer2.weight' in state_dict:
state_dict['hidden_layers.0.weight'] = state_dict.pop('linear_layer2.weight')
state_dict['hidden_layers.0.bias'] = state_dict.pop('linear_layer2.bias')
# Call the parent class's load_state_dict with the modified state_dict
super(ProjectionLayer, self).load_state_dict(state_dict, strict)
def set_alignment_strategy(self, alignment_strategy):
self.alignment_strategy = alignment_strategy
return
def __len__(self):
return sum(p.numel() for p in self.parameters())
class DoubleMLP(nn.Module):
def __init__(self, act=nn.Tanh(), hidden_layer=False, cosine=True, dino_embed_dim=1024, clip_embed_dim=512, num_attn_head=16, weight_attn_heads=None,
alignment_strategy='max_score', alpha=0.6, keep_cls=False, keep_end_seq=False):
super().__init__()
self.num_attn_head = num_attn_head
self.linear_layer = nn.Linear(clip_embed_dim, dino_embed_dim)
if hidden_layer:
hidden_layer = 1 if hidden_layer is True else hidden_layer # ensuring compatibility with old code
# self.linear_layer2 = nn.Linear(dino_embed_dim, dino_embed_dim)
self.hidden_layers = nn.ModuleList([nn.Linear(dino_embed_dim, dino_embed_dim) for _ in range(hidden_layer)])
self.act = act
self.cosine = cosine
self.weight_attn_heads = weight_attn_heads
if weight_attn_heads == 'static':
self.attn_weights = nn.Parameter(torch.rand(self.num_attn_head))
elif weight_attn_heads == 'conditioned':
self.weight_layer1 = nn.Linear(dino_embed_dim, dino_embed_dim)
self.weight_layer2 = nn.Linear(dino_embed_dim, self.num_attn_head)
self.alignment_strategy = alignment_strategy # relevant only if we use disentangled_self_attn
self.keep_cls = keep_cls # relevant only if we use clip_txt_tokens_out
self.keep_end_seq = keep_end_seq # relevant only if we use clip_txt_tokens_out
self.alpha = alpha
self.visual_linear = nn.Linear(dino_embed_dim, dino_embed_dim)
if hidden_layer:
hidden_layer = 1 if hidden_layer is True else hidden_layer # ensuring compatibility with old code
self.visual_hidden_layers = nn.ModuleList([nn.Linear(dino_embed_dim, dino_embed_dim) for _ in range(hidden_layer)])
@classmethod
def from_config(cls, config):
if type(config) is str:
# if the configuration is a string, we treat it as a file path
with open(config, 'r') as f:
config = yaml.safe_load(f)['model']
# loading the activation function
act = config.get('act', None)
if act == 'tanh':
act = nn.Tanh()
elif act == 'relu':
act = nn.ReLU()
elif act == 'sigmoid':
act = nn.Sigmoid()
elif act is not None:
raise Exception("Unknown activation function")
model = cls(
act=act,
hidden_layer=config.get('hidden_layer', False),
cosine=config.get('cosine', True),
dino_embed_dim=config.get('dino_embed_dim', 1024),
num_attn_head=config.get('num_attn_head', 16),
clip_embed_dim=config.get('clip_embed_dim', 512),
weight_attn_heads=config.get('weight_attn_heads', None),
alignment_strategy=config.get('alignment_strategy', 'max_score'),
alpha=config.get('alpha', 0.6),
keep_cls=config.get('keep_cls', None),
keep_end_seq=config.get('keep_end_seq', None),
)
if config.get('starting_checkpoint', None) is not None:
model.load_state_dict(torch.load(config['starting_checkpoint'], 'cpu'))
return model
def compute_similarity(self, visual_embedding, textual_embedding, text_input_mask=None):
if len(visual_embedding.shape) == 3 or len(textual_embedding.shape) == 3:
# at least one embedding is decomposed: either we have all textual tokens or we have all the attention head tokens
if self.alignment_strategy == 'weighted_avg':
if len(visual_embedding.shape) != 3 or len(textual_embedding.shape) != 2:
raise Exception("Alignment strategy not implemented for this type of embeddings!")
sims = torch.einsum('ik,ijk->ij', textual_embedding, visual_embedding)
sims = sims.softmax(dim=-1)
# in this case, we keep as visual_embedding the averaged token weighted by the text similarities
visual_embedding = (visual_embedding * sims.unsqueeze(dim=-1)).mean(dim=1)
sims = textual_embedding @ visual_embedding.transpose(1, 0)
# in this case we sample the visual embedding from the softmax similarities of attention heads tokens and the textual tokens
elif self.alignment_strategy == 'sampled_attn_map':
if len(visual_embedding.shape) != 3 or len(textual_embedding.shape) != 2:
raise Exception("Alignment strategy not implemented for this type of embeddings!")
sims = torch.einsum('ik,ijk->ij', textual_embedding, visual_embedding)
sims = sims.softmax(dim=-1)
# in this case, we sample from the distribution given byt text2attn-maps similarities the attention map to align
index = torch.multinomial(sims, 1).view(-1, 1, 1).expand(-1, 1, visual_embedding.shape[-1])
visual_embedding = torch.gather(visual_embedding, 1, index).squeeze(1)
sims = textual_embedding @ visual_embedding.transpose(1, 0)
elif self.alignment_strategy == 'max_score':
sims = torch.einsum('ik,ijk->ij', textual_embedding, visual_embedding)
sims = sims.softmax(dim=-1)
index = sims.argmax(dim=-1).view(-1, 1, 1).expand(-1, 1, visual_embedding.shape[-1])
visual_embedding = torch.gather(visual_embedding, 1, index).squeeze(1)
sims = textual_embedding @ visual_embedding.transpose(1, 0)
else:
# in this case we construct a similarity matrix between attention head tokens and textual tokens
# we ensure that both the batch embeddings have the same number of dimensions
textual_embedding = textual_embedding.unsqueeze(1) if len(textual_embedding.shape) == 2 else textual_embedding
visual_embedding = visual_embedding.unsqueeze(1) if len(visual_embedding.shape) == 2 else visual_embedding
if textual_embedding.shape[1] > 1:
assert text_input_mask is not None, "If we use all the textual embeddings, we need the input mask"
if not self.keep_end_seq:
# we take the last True value of the mask and we set it to False
text_input_mask[torch.arange(text_input_mask.shape[0]), torch.sum(text_input_mask, dim=1) - 1] = False
if not self.keep_cls:
text_input_mask[:, 0] = False
# do not consider cls and eos tokens
im_set = visual_embedding
s_seq = textual_embedding
im_set_batch = im_set.size(0)
im_set_len = im_set.size(1)
s_seq_batch = s_seq.size(0)
s_seq_len = s_seq.size(1)
im_set = im_set.unsqueeze(1).expand(-1, s_seq_batch, -1, -1) # B x B x S_im x dim
s_seq = s_seq.unsqueeze(0).expand(im_set_batch, -1, -1, -1) # B x B x S_s x dim
alignments = torch.matmul(im_set, s_seq.permute(0, 1, 3, 2)) # B x B x S_im x S_s
# compute mask for the alignments tensor
if text_input_mask is not None:
alignment_mask = text_input_mask.unsqueeze(1).unsqueeze(0).expand(im_set_batch, -1, im_set_len, -1).logical_not()
alignments.masked_fill_(alignment_mask, value=0)
# alignments = F.relu(alignments)
# alignments = F.normalize(alignments,p=2, dim=2)
if self.alignment_strategy == 'sum':
sims = alignments.sum(dim=(2,3))
elif self.alignment_strategy == 'mean':
sims = alignments.mean(dim=(2,3))
elif self.alignment_strategy == 'max-row_sum':
sims = alignments.max(2)[0].sum(2)
elif self.alignment_strategy == 'nucleus-sampling':
max_alignments = alignments.max(2)[0]
sorted_alignments = max_alignments.sort(dim=2, descending=True)[0]
# min-max normalization
mins = sorted_alignments.min(2)[0].unsqueeze(-1).expand(-1, -1, s_seq_len)
maxs = sorted_alignments.max(2)[0].unsqueeze(-1).expand(-1, -1, s_seq_len)
norm_alignments = ((sorted_alignments - mins) / (maxs - mins))
# transform values in percentage
sums = norm_alignments.sum(dim=-1).unsqueeze(-1).expand(-1, -1, s_seq_len)
norm_alignments = norm_alignments / sums
# finding the element indices which surpasses alpha
cumsums = norm_alignments.cumsum(2)
indices = torch.argmax((cumsums > self.alpha).int() + 1, dim=2)
mask = torch.arange(s_seq_len).unsqueeze(0).unsqueeze(0).expand(s_seq_batch, s_seq_batch, s_seq_len).to(indices.device) < indices.unsqueeze(-1).expand(-1, -1, s_seq_len) + 1
relevant_alignments = (sorted_alignments * mask)
sims = relevant_alignments.sum(dim=2)
else:
# default case: dot-product
sims = textual_embedding @ visual_embedding.transpose(1, 0)
return sims
def forward(self, visual_embedding, textual_embedding, ret_similarity_matrix=True, ret_embeds=False, self_attn_maps=None, cls=None, text_input_mask=None):
if self.weight_attn_heads is not None:
assert self_attn_maps is not None, "In case we have attention maps weights, we have to weight patch tokens mean by the weighted self-attention maps"
visual_embedding = self.get_visual_embed(visual_embedding, self_attn_maps=self_attn_maps, cls=cls)
visual_embedding = self.project_visual(visual_embedding)
textual_embedding = self.project_clip_txt(textual_embedding)
if self.cosine:
textual_embedding = F.normalize(textual_embedding, p=2, dim=-1)
visual_embedding = F.normalize(visual_embedding, p=2, dim=-1)
if ret_embeds:
return textual_embedding, visual_embedding
x = self.compute_similarity(visual_embedding, textual_embedding, text_input_mask)
if not ret_similarity_matrix:
x = x[torch.eye(len(x)) > 0.5] # only diagonal elements
return x
def get_visual_embed(self, visual_embedding, self_attn_maps=None, cls=None):
if self_attn_maps is not None:
# we weight each attention head to obtain a weighted self-attention map
assert len(visual_embedding.shape) == 3, "In case we have attention maps weights, the visual_embedding should contain patch embeddings, with shape BS x NUM_PATCHES x EMBED_DIM"
if self.weight_attn_heads == 'conditioned':
assert cls is not None, "cls must be setted in case of dinamic attention weighting"
x = self.weight_layer1(cls)
x = self.act(x)
x = self.weight_layer2(x)
normalized_attn_weights = x.softmax(dim=1)
self_attn = (self_attn_maps * normalized_attn_weights.unsqueeze(dim=-1)).mean(dim=1)
else:
normalized_attn_weights = self.attn_weights.softmax(dim=0)
self_attn = (self_attn_maps * normalized_attn_weights.view(1, normalized_attn_weights.shape[0], 1)).mean(dim=1)
self_attn = self_attn.softmax(dim=-1)
# then we perform the weighted mean of patches
visual_embedding = (self_attn.unsqueeze(-1) * visual_embedding).mean(dim=1)
return visual_embedding
def project_clip_txt(self, textual_embedding):
textual_embedding = textual_embedding.float()
x = self.linear_layer(textual_embedding)
for hidden_layer in self.hidden_layers:
if self.act:
x = self.act(x)
x = hidden_layer(x)
return x
def project_visual(self, visual_embedding):
visual_embedding = visual_embedding.float()
x = self.visual_linear(visual_embedding)
for hidden_layer in self.visual_hidden_layers:
if self.act:
x = self.act(x)
x = hidden_layer(x)
return x
def load_state_dict(self, state_dict, strict=True):
# compatibility with old code
if 'linear_layer2.weight' in state_dict:
state_dict['hidden_layers.0.weight'] = state_dict.pop('linear_layer2.weight')
state_dict['hidden_layers.0.bias'] = state_dict.pop('linear_layer2.bias')
# Call the parent class's load_state_dict with the modified state_dict
super(DoubleMLP, self).load_state_dict(state_dict, strict)
def set_alignment_strategy(self, alignment_strategy):
self.alignment_strategy = alignment_strategy
return
def __len__(self):
return sum(p.numel() for p in self.parameters())
class CLIPLastLayer(nn.Module):
def __init__(self, act=nn.Tanh(), hidden_layer=False, cosine=True, dino_embed_dim=1024, clip_embed_dim=512, weight_attn_heads=None, alignment_strategy='max_score', clip_model='ViT-B/16', text_input_mask=None):
import clip
super().__init__()
self.clip_model, _ = clip.load(clip_model)
self.clip_model.to(dtype=torch.float32)
# self.last_resblock = copy.deepcopy(self.clip_model.transformer.resblocks[-1])
self.last_resblock = self.clip_model.transformer.resblocks[-1]
# self.last_resblock.requires_grad_(False)
# self.last_ln = copy.deepcopy(self.clip_model.ln_final)
self.last_ln = self.clip_model.ln_final
# self.last_ln.requires_grad_(False)
# self.clip_text_proj = copy.deepcopy(self.clip_model.text_projection)
self.clip_text_proj = self.clip_model.text_projection
# self.clip_text_proj.requires_grad_(False)
self.clip_dtype = self.clip_model.dtype
del self.clip_model
self.projection_layer = ProjectionLayer(act=act, hidden_layer=hidden_layer, cosine=cosine, dino_embed_dim=dino_embed_dim,
clip_embed_dim=clip_embed_dim, weight_attn_heads=weight_attn_heads, alignment_strategy=alignment_strategy)
def forward(self, visual_embedding, textual_embedding, ret_similarity_matrix=True, ret_embeds=False, self_attn_maps=None, cls=None, text_argmax=None, text_input_mask=None):
x = self.last_resblock(textual_embedding.permute(1, 0, 2))
x = x.permute(1, 0, 2)
x = self.last_ln(x).type(self.clip_dtype)
x = x[torch.arange(x.shape[0]), text_argmax] @ self.clip_text_proj
if ret_embeds:
textual_embedding, visual_embedding = self.projection_layer(visual_embedding, x, ret_similarity_matrix=ret_similarity_matrix, ret_embeds=ret_embeds, self_attn_maps=self_attn_maps, cls=cls)
return textual_embedding, visual_embedding
x = self.projection_layer(visual_embedding, x, ret_similarity_matrix=ret_similarity_matrix, ret_embeds=ret_embeds, self_attn_maps=self_attn_maps, cls=cls)
return x
def project_clip_txt(self, textual_embedding, text_argmax):
x = self.last_resblock(textual_embedding.permute(1, 0, 2))
x = x.permute(1, 0, 2)
x = self.last_ln(x).type(self.clip_dtype)
x = x[torch.arange(x.shape[0]), text_argmax] @ self.clip_text_proj
x = self.projection_layer.project_clip_txt(x)
return x
@classmethod
def from_config(cls, config):
if type(config) is str:
# if the configuration is a string, we treat it as a file path
with open(config, 'r') as f:
config = yaml.safe_load(f)['model']
# loading the activation function
act = config.get('act', None)
if act == 'tanh':
act = nn.Tanh()
elif act == 'relu':
act = nn.ReLU()
elif act == 'sigmoid':
act = nn.Sigmoid()
elif act is not None:
raise Exception("Unknown activation function")
model = cls(
act=act,
hidden_layer=config.get('hidden_layer', False),
cosine=config.get('cosine', True),
dino_embed_dim=config.get('dino_embed_dim', 1024),
clip_embed_dim=config.get('clip_embed_dim', 512),
weight_attn_heads=config.get('weight_attn_heads', None),
alignment_strategy=config.get('alignment_strategy', 'max_score'),
clip_model=config.get('clip_model', 'ViT-B/16')
)
if config.get('starting_checkpoint', None) is not None:
model.load_state_dict(torch.load(config['starting_checkpoint'], 'cpu'))
return model
def __len__(self):
return sum(p.numel() for p in self.parameters())
class DinoText(nn.Module):
"""
Project images and texts into DINOv2 latent space.
"""
def __init__(self, dino_cfg="dinov2_vitl14_reg", clip_cfg="ViT-B/16", projection_cfg="configs/linear.yaml", projection_weights="weights/linear_avg_self_attn_out.pth", freeze_text_encoder=True, avg_self_attn_token=True, use_disentangled_self_attn=False):
super().__init__()
# DINO parameters
self.num_global_tokens = 1 if "reg" not in dino_cfg else 5
self.embed_dim = 1024 if "vitl" in dino_cfg else 768
self.num_attn_heads = 16
self.scale = 0.125
self.visual_backbone = torch.hub.load('facebookresearch/dinov2', dino_cfg)
self.text_backbone, _ = clip.load(clip_cfg)
self.clip2dino_proj = ProjectionLayer.from_config(projection_cfg)
if projection_weights is not None:
self.clip2dino_proj.load_state_dict(torch.load(projection_weights, 'cpu'))
self.use_avg_self_attn = avg_self_attn_token
self.use_disentangled_self_attn = use_disentangled_self_attn
if self.use_avg_self_attn or self.use_disentangled_self_attn:
self.visual_backbone.blocks[-1].attn.qkv.register_forward_hook(get_self_attention)
if self.use_disentangled_self_attn:
self.visual_backbone.blocks[-1].attn.qkv.register_forward_hook(get_self_attention)
if freeze_text_encoder:
self.text_backbone.eval()
self.text_backbone.requires_grad_(False)
self.avg_self_attn_token = avg_self_attn_token
if self.avg_self_attn_token or self.use_disentangled_self_attn:
self.visual_backbone.blocks[-1].attn.qkv.register_forward_hook(self.get_self_attention)
self.feats = {}
self.num_global_tokens = 1 if "reg" not in dino_cfg else 5
self.num_attn_heads = 16
self.scale = 0.125
@classmethod
def from_config(cls, cfg):
if type(cfg) is str:
# if the configuration is a string, we treat it as a file path
with open(cfg, 'r') as f:
cfg = yaml.safe_load(f)['model']
model = cls(
dino_cfg=cfg.get('dino_cfg', "dinov2_vitl14_reg"),
clip_cfg=cfg.get('clip_cfg', "ViT-B/16"),
projection_cfg=cfg.get('projection_cfg', "configs/linear.yaml"),
projection_weights=cfg.get('projection_weights', None),
avg_self_attn_token=cfg.get('use_avg_self_attn', False),
use_disentangled_self_attn=cfg.get('use_disentangled_self_attn', False),
)
return model
def encode_text(self, tokenized_texts):
x = self.text_backbone.encode_text(tokenized_texts)
x = self.clip2dino_proj.project_clip_txt(x)
return x
def encode_image(self, images):
batch_size, _, _, _ = images.shape
x = self.visual_backbone(images, is_training=self.avg_self_attn_token or self.use_disentangled_self_attn)
if self.avg_self_attn_token:
batch_size, num_tokens, embed_dim = x['x_norm_patchtokens'].shape
num_tokens = num_tokens + self.num_global_tokens
self_attn = self.process_self_attention(self.feats['self_attn'], batch_size, num_tokens, self.num_attn_heads, embed_dim, self.scale, self.num_global_tokens)
x = (self_attn.unsqueeze(-1) * x['x_norm_patchtokens']).mean(dim=1)
if self.use_disentangled_self_attn:
batch_size, num_tokens, embed_dim = x['x_norm_patchtokens'].shape
num_tokens = num_tokens + self.num_global_tokens
self_attn, self_attn_maps = self.process_self_attention(self.feats['self_attn'], batch_size, num_tokens, self.num_attn_heads, embed_dim, self.scale, self.num_global_tokens, ret_self_attn_maps=True)
self_attn_maps = self_attn_maps.softmax(dim=-1)
x = (x['x_norm_patchtokens'].unsqueeze(1) * self_attn_maps.unsqueeze(-1)).mean(dim=2)
return x
def get_self_attention(self, module, input, output):
self.feats['self_attn'] = output
def process_self_attention(self, output, batch_size, num_tokens, num_attn_heads, embed_dim, scale, num_global_tokens, ret_self_attn_maps=False):
qkv = output.reshape(batch_size, num_tokens, 3, num_attn_heads, embed_dim // num_attn_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0] * scale, qkv[1], qkv[2]
attn = q @ k.transpose(-2, -1)
self_attn_maps = attn[:, : , 0, num_global_tokens:]
self_attn = self_attn_maps.mean(dim=1)
self_attn = self_attn.softmax(dim=-1)
if ret_self_attn_maps:
return self_attn, self_attn_maps
else:
return self_attn
def forward(self, images, tokenized_texts, cosine=True, ret_similarity_matrix=True):
img_embed = self.encode_image(images)
txt_embed = self.encode_text(tokenized_texts)
if cosine:
img_embed = F.normalize(img_embed, p=2, dim=1)
txt_embed = F.normalize(txt_embed, p=2, dim=1)
x = img_embed @ txt_embed.transpose(1, 0)
if not ret_similarity_matrix:
x = x[torch.eye(len(x)) > 0.5] # only diagonal elements
return x
def __len__(self):
def count_parameters(model):
return sum(p.numel() for p in model.parameters())
return count_parameters(self.visual_backbone) + count_parameters(self.clip2dino_proj) + count_parameters(self.text_backbone.transformer)