-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_util.py
209 lines (181 loc) · 8.36 KB
/
train_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from copy import deepcopy
from torch.utils.data import DataLoader
import torch
import torch.optim as optim
import torch.nn as nn
from torch.nn import functional as F
from tqdm import tqdm
import matplotlib.pyplot as plt
from src.loss import ContrastiveLoss
import os
import matplotlib.pyplot as plt
import wandb
import numpy as np
import random
import json
def set_seed(seed):
print(f'Setting seed {seed}...')
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# torch.use_deterministic_algorithms(True)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
def assign_learning_rate(optimizer, new_lr):
for param_group in optimizer.param_groups:
param_group["lr"] = new_lr
def _warmup_lr(base_lr, warmup_length, step):
return base_lr * (step + 1) / warmup_length
def const_lr(optimizer, base_lr, warmup_length, steps):
def _lr_adjuster(step):
if step < warmup_length:
lr = _warmup_lr(base_lr, warmup_length, step)
else:
lr = base_lr
assign_learning_rate(optimizer, lr)
return lr
return _lr_adjuster
def cosine_lr(optimizer, base_lr, warmup_length, steps):
def _lr_adjuster(step):
if step < warmup_length:
lr = _warmup_lr(base_lr, warmup_length, step)
else:
e = step - warmup_length
es = steps - warmup_length
lr = 0.5 * (1 + np.cos(np.pi * e / es)) * base_lr
assign_learning_rate(optimizer, lr)
return lr
return _lr_adjuster
def train(model, train_dataloader, contrastive_loss, optimizer, scheduler=None, wandb=False, save_head_attivations=None, n_epochs=0):
"""train the model for one epoch"""
train_batch_losses = []
device = next(model.parameters()).device
prev_iter = n_epochs * len(train_dataloader)
head_attivations = []
ann_ids = []
img_ids = []
for n_batch, batch in enumerate(tqdm(train_dataloader)):
annotations = batch['annotation'].to(device, dtype=torch.float32)
images = batch['image'].to(device)
if 'text_argmax' in batch:
text_argmax = batch['text_argmax'].to(device)
else:
text_argmax = None
if 'self_attn_maps' in batch:
self_attn_maps = batch['self_attn_maps'].to(device)
cls = batch['dino_features'].to(device)
else:
self_attn_maps = None
cls = None
if 'text_input_mask' in batch:
text_input_mask = batch['text_input_mask'].to(device)
else:
text_input_mask = None
if scheduler is not None:
scheduler(n_batch + prev_iter)
if not save_head_attivations:
loss = contrastive_loss(images, annotations, return_similarity_mat=False, self_attn_maps=self_attn_maps, cls=cls, text_input_mask=text_input_mask, text_argmax=text_argmax)
else:
loss, batch_head_attivations = contrastive_loss(images, annotations, return_similarity_mat=False, self_attn_maps=self_attn_maps, cls=cls, text_input_mask=text_input_mask, text_argmax=text_argmax, return_index=True)
head_attivations.append(batch_head_attivations)
ann_ids.append(batch['metadata']['annotation_id'])
img_ids.append(batch['metadata']['image_id'])
train_batch_losses.append(loss.item())
optimizer.zero_grad()
loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), 5.0, norm_type=2.0)
optimizer.step()
if wandb:
wandb.log({'train_loss': loss.item()})
if save_head_attivations is not None:
head_attivations = torch.cat(head_attivations)
ann_ids = torch.cat(ann_ids)
img_ids = torch.cat(img_ids)
act_dict = {}
for act, ann, img in zip(head_attivations, ann_ids, img_ids):
act_dict[ann.item()] = {
'image_id': img.item(),
'activation_head': act.item()
}
with open(save_head_attivations, 'w') as f:
json.dump(act_dict, f)
print(f"Saved activation heads summary at {save_head_attivations}")
return torch.mean(torch.tensor(train_batch_losses)).item()
def validate(model, val_dataloader, contrastive_loss, verbose=False):
# evaluate the model in the validation set
device = next(model.parameters()).device
val_batch_losses = []
val_dataloader = tqdm(val_dataloader) if verbose else val_dataloader
for n_batch, batch in enumerate(val_dataloader):
annotations = batch['annotation'].to(device, dtype=torch.float32)
if 'text_argmax' in batch:
text_argmax = batch['text_argmax'].to(device)
else:
text_argmax = None
images = batch['image'].to(device)
if 'self_attn_maps' in batch:
self_attn_maps = batch['self_attn_maps'].to(device)
cls = batch['dino_features'].to(device)
else:
self_attn_maps = None
cls = None
if 'text_input_mask' in batch:
text_input_mask = batch['text_input_mask'].to(device)
else:
text_input_mask = None
with torch.no_grad():
loss = contrastive_loss(images, annotations, return_similarity_mat=False, self_attn_maps=self_attn_maps, cls=cls, text_input_mask=text_input_mask, text_argmax=text_argmax)
val_batch_losses.append(loss.item())
return torch.mean(torch.tensor(val_batch_losses)).item()
def do_train(model, train_dataset, val_dataset, train_cfg, seed=123, optimizer_name="Adam", weight_decay=0.05, scheduler_name='linear', warmup=0, save_head_attivations=None):
device = next(model.parameters()).device
# setting manual seed
# torch.manual_seed(seed)
set_seed(seed)
# mandatory parameters
lr, ltype, num_epochs, batch_size = train_cfg['lr'], train_cfg['ltype'], train_cfg['num_epochs'], train_cfg['batch_size']
# optional parameters
margin = train_cfg.get('margin', 0.2)
max_violation = train_cfg.get('max_violation', True)
shuffle = train_cfg.get('shuffle', True)
save_best_model = train_cfg.get('save_best_model', True)
# early_stopping = train_cfg.get('early_stopping', 0) # 0 means no early-stopping
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=8)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=8)
criterion = ContrastiveLoss(model, margin=margin, max_violation=max_violation, ltype=ltype)
if optimizer_name == "Adam":
optimizer = optim.Adam(model.parameters(), lr=lr)
elif optimizer_name == "AdamW":
optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay)
else:
raise ValueError(f"Optimizer {optimizer_name} not implemented")
total_steps = len(train_dataloader) * num_epochs
if scheduler_name == 'linear' and warmup == 0:
scheduler = None
elif scheduler_name == 'linear' and warmup > 0:
scheduler = const_lr(optimizer, lr, warmup, total_steps)
elif scheduler_name == 'cosine':
scheduler = cosine_lr(optimizer, lr, warmup, total_steps)
# losses declaration
train_losses = torch.zeros(num_epochs)
val_losses = torch.zeros(num_epochs)
for epoch in range(num_epochs):
# train loss
model.train()
train_loss = train(model, train_dataloader, criterion, optimizer, scheduler, save_head_attivations=None if epoch < num_epochs - 1 else save_head_attivations, n_epochs=epoch)
train_losses[epoch] = train_loss
# eval loop
model.eval()
print("Performing Evaluation...")
val_loss = validate(model, val_dataloader, criterion)
val_losses[epoch] = val_loss
print(f"Epoch {epoch}: train_loss={train_losses[epoch]} - val_loss={val_losses[epoch]}")
# evaluating if best model and check early stopping
if save_best_model and (epoch == 0 or val_losses[epoch] < min(val_losses[:epoch]).item()):
print(f"Best validation loss, saving the model")
best_model = deepcopy(model)
model = model if not save_best_model else best_model
return model, train_losses, val_losses