forked from CSS-Electronics/canedge-influxdb-writer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
504 lines (405 loc) · 20.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
def setup_fs(s3, key="", secret="", endpoint="", region="",cert="", passwords={}):
"""Given a boolean specifying whether to use local disk or S3, setup filesystem
Syntax examples: AWS (http://s3.us-east-2.amazonaws.com), MinIO (http://192.168.0.1:9000)
The cert input is relevant if you're using MinIO with TLS enabled, for specifying the path to the certficiate.
For MinIO you should also parse the region_name
The block_size is set to accomodate files up to 55 MB in size. If your log files are larger, adjust this value accordingly
"""
if s3:
import s3fs
block_size = 55 * 1024 * 1024
if "amazonaws" in endpoint:
fs = s3fs.S3FileSystem(key=key, secret=secret, default_block_size=block_size)
elif cert != "":
fs = s3fs.S3FileSystem(
key=key,
secret=secret,
client_kwargs={"endpoint_url": endpoint, "verify": cert, "region_name": region},
default_block_size=block_size,
)
else:
fs = s3fs.S3FileSystem(
key=key,
secret=secret,
client_kwargs={"endpoint_url": endpoint, "region_name": region},
default_block_size=block_size,
)
else:
from pathlib import Path
import canedge_browser
base_path = Path(__file__).parent
fs = canedge_browser.LocalFileSystem(base_path=base_path, passwords=passwords)
return fs
# -----------------------------------------------
def load_dbc_files(dbc_paths):
"""Given a list of DBC file paths, create a list of conversion rule databases"""
import can_decoder
from pathlib import Path
db_list = []
for dbc in dbc_paths:
db = can_decoder.load_dbc(Path(__file__).parent / dbc)
db_list.append(db)
return db_list
# -----------------------------------------------
def list_log_files(fs, devices, start_times, verbose=True, passwords={}):
"""Given a list of device paths, list log files from specified filesystem.
Data is loaded based on the list of start datetimes
"""
import canedge_browser
log_files = []
if len(start_times):
for idx, device in enumerate(devices):
start = start_times[idx]
log_files_device = canedge_browser.get_log_files(fs, [device], start_date=start, passwords=passwords)
log_files.extend(log_files_device)
if verbose:
print(f"Found {len(log_files)} log files\n")
return log_files
def add_signal_prefix(df_phys, can_id_prefix=False, pgn_prefix=False, bus_prefix=False):
"""Rename Signal names by prefixing the full
CAN ID (in hex) and/or J1939 PGN
"""
from J1939_PGN import J1939_PGN
if df_phys.empty:
return df_phys
else:
prefix = ""
if bus_prefix:
prefix += df_phys["BusChannel"].apply(lambda x: f"{x}.")
if can_id_prefix:
prefix += df_phys["CAN ID"].apply(lambda x: f"{hex(int(x))[2:].upper()}." )
if pgn_prefix:
prefix += df_phys["CAN ID"].apply(lambda x: f"{J1939_PGN(int(x)).pgn}.")
df_phys["Signal"] = prefix + df_phys["Signal"]
return df_phys
def restructure_data(df_phys, res, ffill=False):
"""Restructure the decoded data to a resampled
format where each column reflects a Signal
"""
import pandas as pd
if not df_phys.empty and res != "":
df_phys = df_phys.pivot_table(values="Physical Value", index=pd.Grouper(freq=res), columns="Signal")
if ffill:
df_phys = df_phys.ffill()
return df_phys
def test_signal_threshold(df_phys, signal, threshold):
"""Illustrative example for how to extract a signal and evaluate statistical values
vs. defined thresholds. The function can be easily modified for your needs.
"""
df_signal = df_phys[df_phys["Signal"] == signal]["Physical Value"]
stats = df_signal.agg(["count", "min", "max", "mean", "std"])
delta = stats["max"] - stats["min"]
if delta > threshold:
print(f"{signal} exhibits a 'max - min' delta of {delta} exceeding threshold of {threshold}")
def add_custom_sig(df_phys, signal1, signal2, function, new_signal):
"""Helper function for calculating a new signal based on two signals and a function.
Returns a dataframe with the new signal name and physical values
"""
import pandas as pd
try:
s1 = df_phys[df_phys["Signal"] == signal1]["Physical Value"].rename(signal1)
s2 = df_phys[df_phys["Signal"] == signal2]["Physical Value"].rename(signal2)
df_new_sig = pd.merge_ordered(
s1,
s2,
on="TimeStamp",
fill_method="ffill",
).set_index("TimeStamp")
df_new_sig = df_new_sig.apply(lambda x: function(x[0], x[1]), axis=1).dropna().rename("Physical Value").to_frame()
df_new_sig["Signal"] = new_signal
df_phys = df_phys.append(df_new_sig)
except:
print(f"Warning: Custom signal {new_signal} not created\n")
return df_phys
# -----------------------------------------------
class ProcessData:
def __init__(self, fs, db_list, signals=[], days_offset=None, verbose=True):
from datetime import datetime, timedelta
self.db_list = db_list
self.signals = signals
self.fs = fs
self.days_offset = days_offset
self.verbose = verbose
if self.verbose == True and self.days_offset != None:
date_offset = (datetime.today() - timedelta(days=self.days_offset)).strftime("%Y-%m-%d")
print(
f"Warning: days_offset = {self.days_offset}, meaning data is offset to start at {date_offset}.\nThis is intended for sample data testing only. Set days_offset = None when processing your own data."
)
return
def extract_phys(self, df_raw):
"""Given df of raw data and list of decoding databases, create new def with
physical values (no duplicate signals and optionally filtered/rebaselined)
"""
import can_decoder
import pandas as pd
df_phys = pd.DataFrame()
df_phys_temp = []
for db in self.db_list:
df_decoder = can_decoder.DataFrameDecoder(db)
for bus, bus_group in df_raw.groupby("BusChannel"):
for length, group in bus_group.groupby("DataLength"):
df_phys_group = df_decoder.decode_frame(group)
if not df_phys_group.empty:
df_phys_group["BusChannel"] = bus
df_phys_temp.append(df_phys_group)
df_phys = pd.concat(df_phys_temp, ignore_index=False).sort_index()
# remove duplicates in case multiple DBC files contain identical signals
df_phys["datetime"] = df_phys.index
df_phys = df_phys.drop_duplicates(keep="first")
df_phys = df_phys.drop(labels="datetime", axis=1)
# optionally filter and rebaseline the data
df_phys = self.filter_signals(df_phys)
if not df_phys.empty and type(self.days_offset) == int:
df_phys = self.rebaseline_data(df_phys)
return df_phys
def rebaseline_data(self, df_phys):
"""Given a df of physical values, this offsets the timestamp
to be equal to today, minus a given number of days.
"""
from datetime import datetime, timezone
import pandas as pd
delta_days = (datetime.now(timezone.utc) - df_phys.index.min()).days - self.days_offset
df_phys.index = df_phys.index + pd.Timedelta(delta_days, "day")
return df_phys
def filter_signals(self, df_phys):
"""Given a df of physical values, return only signals matched by filter"""
if not df_phys.empty and len(self.signals):
df_phys = df_phys[df_phys["Signal"].isin(self.signals)]
return df_phys
def get_raw_data(self, log_file, passwords={},lin=False):
"""Extract a df of raw data and device ID from log file.
Optionally include LIN bus data by setting lin=True
"""
import mdf_iter
with self.fs.open(log_file, "rb") as handle:
mdf_file = mdf_iter.MdfFile(handle, passwords=passwords)
device_id = self.get_device_id(mdf_file)
if lin:
df_raw_lin = mdf_file.get_data_frame_lin()
df_raw_lin["IDE"] = 0
df_raw_can = mdf_file.get_data_frame()
df_raw = df_raw_can.append(df_raw_lin)
else:
df_raw = mdf_file.get_data_frame()
return df_raw, device_id
def get_device_id(self, mdf_file):
return mdf_file.get_metadata()["HDcomment.Device Information.serial number"]["value_raw"]
def print_log_summary(self, device_id, log_file, df_phys):
"""Print summary information for each log file"""
if self.verbose:
print(
"\n---------------",
f"\nDevice: {device_id} | Log file: {log_file.split(device_id)[-1]} [Extracted {len(df_phys)} decoded frames]\nPeriod: {df_phys.index.min()} - {df_phys.index.max()}\n",
)
# -----------------------------------------------
class MultiFrameDecoder:
"""Class for handling transport protocol data. For each response ID, identify
sequences of subsequent frames and combine the relevant parts of the data payloads
into a single payload with the relevant CAN ID. The original raw dataframe is
then cleansed of the original response ID sequence frames. Instead, the new reassembled
frames are inserted.
:param tp_type: the class supports UDS ("uds"), NMEA 2000 Fast Packets ("nmea") and J1939 ("j1939")
:param df_raw: dataframe of raw CAN data from the mdf_iter module
SINGLE_FRAME_MASK: mask used in matching single frames
FIRST_FRAME_MASK: mask used in matching first frames
CONSEQ_FRAME_MASK: mask used in matching consequtive frames
SINGLE_FRAME: frame type reflecting a single frame response
FIRST_FRAME: frame type reflecting the first frame in a multi frame response
CONSEQ_FRAME: frame type reflecting a consequtive frame in a multi frame response
ff_payload_start: the combined payload will start at this byte in the FIRST_FRAME
bam_pgn: this is used in J1939 and marks the initial BAM message ID in DEC
res_id_list: TP 'response CAN IDs' to process
"""
FRAME_STRUCT = {
"": {},
"uds": {
"SINGLE_FRAME_MASK": 0xF0,
"FIRST_FRAME_MASK": 0xF0,
"CONSEQ_FRAME_MASK": 0xF0,
"SINGLE_FRAME": 0x00,
"FIRST_FRAME": 0x10,
"CONSEQ_FRAME": 0x20,
"ff_payload_start": 1,
"bam_pgn": -1,
"res_id_list": [1960, 2016, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2026, 1979, 1992, 1998, 2001, 402522235],
"group": "ID"
},
"j1939": {
"SINGLE_FRAME_MASK": 0xFF,
"FIRST_FRAME_MASK": 0xFF,
"CONSEQ_FRAME_MASK": 0x00,
"SINGLE_FRAME": 0xFF,
"FIRST_FRAME": 0x20,
"CONSEQ_FRAME": 0x00,
"ff_payload_start": 8,
"bam_pgn": 60416,
"res_id_list": [60416, 60160],
"group": "SA"
},
"nmea": {
"SINGLE_FRAME_MASK": 0xFF,
"FIRST_FRAME_MASK": 0x1F,
"CONSEQ_FRAME_MASK": 0x00,
"SINGLE_FRAME": 0xFF,
"FIRST_FRAME": 0x00,
"CONSEQ_FRAME": 0x00,
"ff_payload_start": 2,
"bam_pgn": -1,
"res_id_list":[126983, 126984, 126985, 126986, 126987, 126988, 126996, 127233, 127237, 127489, 127496, 127497, 127503, 127504, 127506, 127751, 128275, 128520, 128538, 129029, 129038, 129039, 129040, 129041, 129044, 129284, 129285, 129301, 129302, 129538, 129540, 129541, 129542, 129545, 129547, 129549, 129551, 129556, 129792, 129793, 129794, 129795, 129796, 129798, 129799, 129800, 129801, 129803, 129804, 129805, 129806, 129807, 129808, 129809, 129810, 129811, 129812, 129813, 129814, 129815, 129816, 130052, 130053, 130054, 130060, 130061, 130064, 130065, 130067, 130068, 130069, 130070, 130071, 130072, 130073, 130074, 130320, 130321, 130322, 130323, 130324, 130564, 130565, 130567, 130569, 130571, 130575, 130577, 130578, 130581, 130584, 130586],
"group": "ID"
}}
def __init__(self, tp_type=""):
self.tp_type = tp_type
return
def calculate_pgn(self, frame_id):
pgn = (frame_id & 0x03FFFF00) >> 8
pgn_f = pgn & 0xFF00
if pgn_f < 0xF000:
pgn &= 0xFFFFFF00
return pgn
def calculate_sa(self, frame_id):
sa = frame_id & 0x000000FF
return sa
def construct_new_tp_frame(self, base_frame, payload_concatenated, can_id):
new_frame = base_frame.copy()
new_frame["DataBytes"] = payload_concatenated
new_frame["DLC"] = 0
new_frame["DataLength"] = len(payload_concatenated)
if can_id:
new_frame["ID"] = can_id
return new_frame
def identify_matching_ids(self,df_raw,res_id_list_full, bam_pgn):
# identify which CAN IDs (or PGNs) match the TP IDs and create a filtered df_raw_match
# which is used to separate the df_raw into two parts: Incl/excl TP frames.
# Also produces a reduced res_id_list that only contains relevant ID entries
if self.tp_type == "nmea":
df_raw_pgns = df_raw["ID"].apply(self.calculate_pgn)
df_raw_match = df_raw_pgns.isin(res_id_list_full)
res_id_list = df_raw_pgns[df_raw_match].drop_duplicates().values.tolist()
if self.tp_type == "j1939":
df_raw_pgns = df_raw["ID"].apply(self.calculate_pgn)
df_raw_match = df_raw_pgns.isin(res_id_list_full)
res_id_list = res_id_list_full.copy()
res_id_list.remove(bam_pgn)
if type(res_id_list) is not list:
res_id_list = [res_id_list]
elif self.tp_type == "uds":
df_raw_pgns = None
df_raw_match = df_raw["ID"].isin(res_id_list_full)
res_id_list = df_raw["ID"][df_raw_match].drop_duplicates().values.tolist()
df_raw_tp = df_raw[df_raw_match]
df_raw_excl_tp = df_raw[~df_raw_match]
if len(df_raw) - len(df_raw_tp) - len(df_raw_excl_tp):
print("Warning - total rows does not equal sum of rows incl/excl transport protocol frames")
return df_raw_tp, df_raw_excl_tp, res_id_list, df_raw_pgns
def filter_df_raw_tp(self, df_raw_tp, df_raw_tp_pgns,res_id):
# filter df_raw_tp to include only frames for the specific response ID res_id
if self.tp_type == "nmea":
df_raw_tp_res_id = df_raw_tp[df_raw_tp_pgns.isin([res_id])]
elif self.tp_type == "j1939":
df_raw_tp_res_id = df_raw_tp
df_raw_tp_res_id = df_raw_tp_res_id.copy()
df_raw_tp_res_id["SA"] = df_raw_tp_res_id["ID"].apply(self.calculate_sa)
else:
df_raw_tp_res_id = df_raw_tp[df_raw_tp["ID"].isin([res_id])]
return df_raw_tp_res_id
def check_if_first_frame(self,row, bam_pgn, first_frame_mask,first_frame):
# check if row reflects the first frame of a TP sequence
if self.tp_type == "j1939" and bam_pgn == self.calculate_pgn(row.ID):
first_frame_test = True
elif (row.DataBytes[0] & first_frame_mask) == first_frame:
first_frame_test = True
else:
first_frame_test = False
return first_frame_test
def pgn_to_can_id(self,row):
# for J1939, extract PGN and convert to 29 bit CAN ID for use in baseframe
pgn_hex = "".join("{:02x}".format(x) for x in reversed(row.DataBytes[5:8]))
pgn = int(pgn_hex, 16)
can_id = (6 << 26) | (pgn << 8) | row.SA
return can_id
def get_payload_length(self,row):
if self.tp_type == "uds":
ff_length = (row.DataBytes[0] & 0x0F) << 8 | row.DataBytes[1]
if self.tp_type == "nmea":
ff_length = row.DataBytes[1]
if self.tp_type == "j1939":
ff_length = int("".join("{:02x}".format(x) for x in reversed(row.DataBytes[1:2])),16)
return ff_length
def combine_tp_frames(self, df_raw):
# main function that reassembles TP frames in df_raw
import pandas as pd
# if tp_type = "" return original df_raw
if self.tp_type not in ["uds","nmea", "j1939"]:
return df_raw
# extract protocol specific TP frame info
frame_struct = MultiFrameDecoder.FRAME_STRUCT[self.tp_type]
res_id_list_full = frame_struct["res_id_list"]
bam_pgn = frame_struct["bam_pgn"]
ff_payload_start = frame_struct["ff_payload_start"]
first_frame_mask = frame_struct["FIRST_FRAME_MASK"]
first_frame = frame_struct["FIRST_FRAME"]
single_frame_mask = frame_struct["SINGLE_FRAME_MASK"]
single_frame = frame_struct["SINGLE_FRAME"]
conseq_frame_mask = frame_struct["CONSEQ_FRAME_MASK"]
conseq_frame = frame_struct["CONSEQ_FRAME"]
# split df_raw in two (incl/excl TP frames)
df_raw_tp, df_raw_excl_tp, res_id_list, df_raw_pgns = self.identify_matching_ids(df_raw,res_id_list_full, bam_pgn)
# initiate new df_raw that will contain both the df_raw excl. TP frames and subsequently all combined TP frames
df_raw = [df_raw_excl_tp]
# for NMEA, apply PGN decoding outside loop
if self.tp_type == "nmea":
df_raw_tp_pgns = df_raw_tp["ID"].apply(self.calculate_pgn)
else:
df_raw_tp_pgns = None
# loop through each relevant TP response ID
for res_id in res_id_list:
# get subset of df_raw_tp containing res_id
df_raw_tp_res_id = self.filter_df_raw_tp(df_raw_tp,df_raw_tp_pgns, res_id)
# distinguish channels
for channel, df_channel in df_raw_tp_res_id.groupby("BusChannel"):
# distinguish IDs from PGNs by grouping on ID (or SA for J1939)
for identifier, df_raw_filter in df_channel.groupby(frame_struct["group"]):
base_frame = df_raw_filter.iloc[0]
frame_list = []
frame_timestamp_list = []
payload_concatenated = []
ff_length = 0xFFF
first_first_frame_test = True
can_id = None
conseq_frame_prev = None
# iterate through rows in filtered dataframe
for row in df_raw_filter.itertuples(index=True,name='Pandas'):
index = row.Index
first_frame_test = self.check_if_first_frame(row, bam_pgn, first_frame_mask,first_frame)
first_byte = row.DataBytes[0]
# if single frame, save frame directly (excl. 1st byte)
if self.tp_type != "nmea" and (first_byte & single_frame_mask == single_frame):
new_frame = self.construct_new_tp_frame(base_frame, row.DataBytes, row.ID)
frame_list.append(new_frame.values.tolist())
frame_timestamp_list.append(index)
# if first frame, save info from prior multi frame response sequence,
# then initialize a new sequence incl. the first frame payload
elif first_frame_test:
# create a new frame using information from previous iterations
if len(payload_concatenated) >= ff_length:
new_frame = self.construct_new_tp_frame(base_frame, payload_concatenated, can_id)
frame_list.append(new_frame.values.tolist())
frame_timestamp_list.append(frame_timestamp)
# reset and start next frame with timestamp & CAN ID from this first frame plus initial payload
conseq_frame_prev = None
frame_timestamp = index
if self.tp_type == "j1939":
can_id = self.pgn_to_can_id(row)
ff_length = self.get_payload_length(row)
payload_concatenated = row.DataBytes[ff_payload_start:]
# if consequtive frame, extend payload with payload excl. 1st byte
elif (conseq_frame_prev == None) or ((first_byte - conseq_frame_prev) == 1):
conseq_frame_prev = first_byte
payload_concatenated += row.DataBytes[1:]
df_raw_res_id_new = pd.DataFrame(frame_list, columns=base_frame.index, index=frame_timestamp_list)
df_raw.append(df_raw_res_id_new)
df_raw = pd.concat(df_raw,join='outer')
df_raw.index.name = "TimeStamp"
df_raw = df_raw.sort_index()
return df_raw