-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathconfig.sh
executable file
·205 lines (161 loc) · 7.91 KB
/
config.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env bash
CONFIG_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
CONFIG_DIR=$(readlink -f $CONFIG_DIR) # this reads the actual path if a symbolic directory is used
cd $CONFIG_DIR # this brings us in the actual folder of this config script (not the symbolic one)
#echo CONFIG_DIR: $CONFIG_DIR
source $CONFIG_DIR/bash_utils.sh
# ====================================================
# BUILD_TYPE
# ====================================================
export BUILD_TYPE=Release # control the build type of all the projects
export BUILD_WITH_MARCH_NATIVE=ON # enable/disable building with --march=native in all the projects
if [[ "$UBUNTU_VERSION" == *"24.04"* ]] ; then
BUILD_WITH_MARCH_NATIVE=OFF # At present, building with --march=native does not work under Ubuntu 24.04 (probably due to different default building options in the native libpcl)
fi
# ====================================================
# C++ standard
# ====================================================
export CPP_STANDARD_VERSION=20 # we need c++17 since nvcc does not support c++20 yet (probably we can try mixing c++ standards and just let nvcc use c++17 ... not sure this is the best choice)
# ====================================================
# Python Settings
# ====================================================
UBUNTU_VERSION=$(lsb_release -a 2>&1) # ubuntu version
if [[ $UBUNTU_VERSION == *"24.04"* ]] ; then
cd $CONFIG_DIR
if [ ! -d "$CONFIG_DIR"/.venv ]; then
echo "installing virtualenv under Ubuntu 24.04"
sudo apt install -y python3-venv
python3 -m venv .venv
fi
echo "activating python venv $CONFIG_DIR/.venv"
source $CONFIG_DIR/.venv/bin/activate
fi
# ====================================================
# OpenCV Settings
# ====================================================
# 1: ON, 0: OFF
export USE_LOCAL_OPENCV=1 # use a local installation of OpenCV
export OPENCV_VERSION="4" # default opencv version
# or you can set manullay OpenCV_DIR
# export OpenCV_DIR="path to my OpenCV folder"
# export OpenCV_DIR="$CONFIG_DIR/thirdparty/opencv/install/lib/cmake/opencv4" # here not set
# ====================================================
# CUDA Settings
# ====================================================
# N.B: if you do not have opencv with CUDA support you must set above:
# USE_LOCAL_OPENCV=1
# 1: ON, 0: OFF
export USE_CUDA=0 # Use CUDA in slamplay code
export CUDA_VERSION_NUMBER=11.8
export CUDA_VERSION="cuda-$CUDA_VERSION_NUMBER" # Must be an installed CUDA path in "/usr/local"
if [ ! -d /usr/local/$CUDA_VERSION ]; then
CUDA_VERSION="cuda" # Use last installed CUDA path (standard path, which is usually a symbolic link to the last installed CUDA version)
fi
export PATH=/usr/local/$CUDA_VERSION/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/$CUDA_VERSION/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
export CUDADIR=/usr/local/$CUDA_VERSION
# ====================================================
# TensorRT Settings
# ====================================================
export USE_TENSORRT=1 # Use TensorRT. The scripts will locally install TensorRT and cmake will use it.
# Only available if you installed CUDA and this is properly detected.
export TENSORRT_VERSION=8 # can be adjusted below depending on the found cuda version
#export TENSORRT_VERSION=10 # WIP
export TENSORRT_DIR=$CONFIG_DIR/thirdparty/TensorRT # Default value. This is the install path used by the script install_local_tensorrt.sh.
# ====================================================
# Torch Settings
# ====================================================
# Will be used by segment anything
export USE_TORCH=1 # Use Torch. The scripts will locally install Torch and use it.
# Only available if you installed CUDA and this is properly detected)
export USE_CUDA_TORCH=0 # Use Torch with CUDA support. 1: ON, 0: OFF
# It seems that Torch with CUDA support is not working properly (for different mixed deps).
# It's very likely we need to build from source. WIP.
export TORCH_DIR=$CONFIG_DIR/thirdparty/libtorch/share/cmake/Torch # Default value. This is the install path used by the script install_local_libtorch.sh.
# ====================================================
# Tensorflow Settings
# ====================================================
# Will be used by HFNet (one of the available HFNet implementations is based on tensorflow C++ API).
# Tested configuration reported in the README file (check the notes therein):
# - **C++**: 17
# - **TENSORFLOW_VERSION**: 2.9.0
# - **BAZEL_VERSION**: 5.1.1
# - **CUDA**: 11.6
# - **CUDNN**: 8.6.0.163-1+cuda11.8
#
export USE_TENSORFLOW=0 # Use Tensorflow C++ API. Only available if you installed tensorflow_cc from source.
# You can use the script install_tensorflow_cc.sh, which will locally install Tensorflow.
# NOTE: This procedures will take a while (~2 hours or so depending on your machine).
# For this reason, it is required that you manually launch the script install_tensorflow_cc.sh.
export TENSORFLOW_ROOT="$HOME/.tensorflow" # Default value. This is the install path used by the script install_tensorflow_cc.sh.
if [ $USE_TENSORFLOW -eq 1 ]; then
if [ ! -d "$TENSORFLOW_ROOT" ]; then
echo "TENSORFLOW_ROOT: $TENSORFLOW_ROOT does not exist"
USE_TENSORFLOW=0
fi
fi
# ====================================================
# Tracy Settings
# ====================================================
# Tracy is a great profiler. Details here https://github.com/wolfpld/tracy
export USE_TRACY=1 # Use Tracy. The script will automatically install it. You will be able to profile your apps with this great profiler.
# ====================================================
# Check and manage settings
# ====================================================
# auto managed things below ...
# ====================================================
# SIMD
# check SIMD supports
export HAVE_SSE3=$(gcc -march=native -dM -E - </dev/null | grep SSE3 || :)
export HAVE_SSE4=$(gcc -march=native -dM -E - </dev/null | grep SSE4 || :)
export HAVE_AVX=$(gcc -march=native -dM -E - </dev/null | grep AVX || : )
# ====================================================
# CUDA
# check CUDA and adjust things if needed
export CUDA_FOUND=0
export CUDA_VERSION_NUMBER=0
if [ -f /usr/local/$CUDA_VERSION/bin/nvcc ] || [ -f /usr/bin/nvcc ]; then
CUDA_FOUND=1
echo "CUDA folder found in /usr/local: $CUDA_VERSION"
CUDA_VERSION_NUMBER=$(get_cuda_version)
CUDA_VERSION_CODE=$(echo "$CUDA_VERSION_NUMBER" | sed 's/\.//g') # for instance, "118" stands for "cuda 11.8"
echo "CUDA_VERSION_NUMBER: $CUDA_VERSION_NUMBER"
echo "CUDA_VERSION_CODE: $CUDA_VERSION_NUMBER"
fi
if [ $CUDA_FOUND -eq 1 ]; then
if [ $CUDA_VERSION_CODE -ge 120 ]; then
echo "CUDA VERSION >= 120"
export TENSORRT_VERSION="10"
echo "TENSORRT_VERSION (adjusted): $TENSORRT_VERSION"
fi
fi
# Reset env var if CUDA lib is not installed
if [ $CUDA_FOUND -eq 0 ]; then
USE_CUDA=0
CUDA_VERSION_NUMBER=0
USE_TENSORRT=0
USE_TORCH=0
echo 'CUDA env var reset, check your CUDA installation'
echo 'TensorRT env var reser'
fi
# ====================================================
# OPENCV
# Check OpenCV directory exists
if [[ -n "$OpenCV_DIR" ]]; then
if [ ! -d $OpenCV_DIR ]; then
echo OpenCV_DIR does not exist: $OpenCV_DIR
exit 1
fi
fi
# Install a local opencv with CUDA support and more
if [ $USE_LOCAL_OPENCV -eq 1 ] && [[ ! -n "$OpenCV_DIR" ]]; then
. install_local_opencv.sh # source it in order to run it and get the env var OPENCV_VERSION
echo OpenCV version: $OPENCV_VERSION
if [[ $OPENCV_VERSION == 4* ]]; then
OpenCV_DIR="$CONFIG_DIR/thirdparty/opencv/install/lib/cmake/opencv4"
else
OpenCV_DIR="$CONFIG_DIR/thirdparty/opencv/install/share/OpenCV"
fi
echo setting OpenCV_DIR: $OpenCV_DIR
#export LD_LIBRARY_PATH=$CONFIG_DIR/thirdparty/opencv/install/lib${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
fi