-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
255 lines (203 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision
from torchvision import models, datasets, transforms
import argparse
import os
import time
def parse_args():
parser = argparse.ArgumentParser(description='Train a classifier')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument('--gpu-id', type=int, default=0,
help='id of gpu to use ' '(only applicable to non-distributed training)')
parser.add_argument('--dataset', type=str, default='cifar10', help='Name of the dataset used')
parser.add_argument('--data_path', type=str, default='./data', help='Path to where the data is')
parser.add_argument('--num_classes', type=int, default=10, help='number of classes of the dataset')
parser.add_argument('--num_channels', type=int, default=3, help='number of channels of the dataset')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size used for training and testing')
parser.add_argument('--model', type=str, default='resnet18', help='Name of the model used')
parser.add_argument('--num_epochs', type=int, default=100, help='Number of training epochs')
parser.add_argument('--latent_dim', type=int, default=32, help='The dimensionality of the VAE latent dimension')
parser.add_argument('--beta', type=float, default=1, help='Hyperparameter for training. The parameter for VAE')
parser.add_argument('--num_adv_steps', type=int, default=1,
help='Number of adversary steps taken for every task model step')
parser.add_argument('--num_vae_steps', type=int, default=2,
help='Number of VAE steps taken for every task model step')
parser.add_argument('--adversary_param', type=float, default=1,
help='Hyperparameter for training. lambda2 in the paper')
parser.add_argument('--out_path', type=str, default='./results', help='Path to where the output log will be')
parser.add_argument('--log_name', type=str, default='accuracies.log',
help='Final performance of the models will be saved with this name')
args = parser.parse_args()
return args
def imagenet_train_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def imagenet_test_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def mnist_train_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.RandomCrop(28, padding=4),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(20),
transforms.Normalize((0.1307,), (0.3081,))
])
def mnist_test_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
def cifar10_train_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
# transforms.Normalize(mean=[0.5, 0.5, 0.5],
# std=[0.5, 0.5, 0.5])
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
def cifar10_test_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
def cifar100_train_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
# transforms.RandomRotation(10),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
def cifar100_test_transform():
return transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
def get_dataset(args):
if args.dataset == 'cifar10':
train_set = torchvision.datasets.CIFAR10(root=args.data_path, train=True, download=False,
transform=cifar10_train_transform())
test_set = torchvision.datasets.CIFAR10(root=args.data_path, train=False, download=False,
transform=cifar10_test_transform())
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False)
if args.dataset == 'cifar100':
train_set = torchvision.datasets.CIFAR100(root=args.data_path, train=True, download=False,
transform=cifar100_train_transform())
test_set = torchvision.datasets.CIFAR100(root=args.data_path, train=False, download=False,
transform=cifar100_test_transform())
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False)
if args.dataset == 'tinyimagenet':
train_set = datasets.ImageFolder(root=args.data_path, transform=imagenet_train_transform())
test_set = datasets.ImageFolder(root=args.data_path, transform=imagenet_test_transform())
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False)
if args.dataset == 'imagenet':
train_set = datasets.ImageFolder(root=args.data_path, transform=imagenet_train_transform())
test_set = datasets.ImageFolder(root=args.data_path, transform=imagenet_test_transform())
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False)
return train_set, test_set, train_loader, test_loader
def get_model(args):
""" return model architecture for image recognition
Args:
name: which model architecture to use
num_classes: number of classes for classification
pretrained: whether or not to get imagenet pretrained model
Return:
model: neural network object to be used
"""
if args.model == 'resnet18':
model = models.resnet18
# model = resnet18
elif args.model == 'resnet34':
model = models.resnet34
elif args.model == 'resnet50':
model = models.resnet50
# model = resnet50
elif args.model == 'resnet101':
model = models.resnet101
# model = resnet101
# elif name == 'resnet110':
# model = resnet110
elif args.model == 'resnet152':
model = models.resnet152
# model = resnet152
return model(num_classes=args.num_classes)
def evaluate_accuracy(model, data_loader, device=None):
model.eval() # evaluation mode, turn off dropout
if device is None and isinstance(model, torch.nn.Module):
# use net.device if no designated device
device = list(model.parameters())[0].device
correct, total, loss = 0.0, 0, 0.0
with torch.no_grad():
for imgs, labels in data_loader:
if isinstance(model, torch.nn.Module):
# acc_sum += (model(imgs.to(device)).argmax(dim=1) == labels.to(device)).float().sum().cpu().item()
output = model(imgs.to(device))
preds = output.argmax(dim=1)
correct += (preds == labels.to(device)).cpu().sum().item()
total += labels.shape[0]
model.train() # back to training mode
return correct / total, loss / len(data_loader)
def evaluate_accuracy_with_test_loss(model, data_loader, criterion=None, device=None):
model.eval() # evaluation mode, turn off dropout
if device is None and isinstance(model, torch.nn.Module):
# use net.device if no designated device
device = list(model.parameters())[0].device
correct, total, loss = 0.0, 0, 0.0
with torch.no_grad():
for imgs, labels in data_loader:
if isinstance(model, torch.nn.Module):
# acc_sum += (model(imgs.to(device)).argmax(dim=1) == labels.to(device)).float().sum().cpu().item()
output = model(imgs.to(device))
preds = output.argmax(dim=1)
correct += (preds == labels.to(device)).cpu().sum().item()
# loss += F.nll_loss(output, labels.to(device)).cpu().item()
loss += criterion(output, labels.to(device)).cpu().item()
total += labels.shape[0]
model.train() # back to training mode
return correct / total, loss / len(data_loader)
def train(model, train_loader, test_loader, criterion, optimizer, num_epochs, device):
for epoch in range(num_epochs):
train_loss_sum, train_acc_sum, total, start = 0.0, 0.0, 0, time.time()
for imgs, labels in train_loader:
imgs, labels = imgs.to(device), labels.to(device)
optimizer.zero_grad()
output = model(imgs)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
train_loss_sum += loss.cpu().item()
train_acc_sum += (output.argmax(dim=1) == labels).sum().cpu().item()
total += labels.shape[0]
torch.save(model.state_dict(),
'./checkpoints/' + args.model + '_' + args.dataset + '_' + time.strftime('%m%d_%H_%M_%S') + '.pt')
# model.load_state_dict(torch.load('./checkpoints/resnet18_cifar10.pt'))
test_acc, test_loss = evaluate_accuracy(model, test_loader, device)
# test_acc, test_loss = evaluate_accuracy_with_test_loss(model, test_loader, criterion, device)
print('Epoch %d: training loss %.4f, train acc %.3f, test acc %.3f, test loss %.4f, time %.1f sec'
% (epoch + 1, train_loss_sum / len(train_loader), train_acc_sum / total,
test_acc, test_loss, time.time() - start))
if __name__ == '__main__':
args = parse_args()
if not os.path.exists(args.out_path):
os.mkdir(args.out_path)
if not os.path.exists('./checkpoints'):
os.mkdir('./checkpoints')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_set, test_set, train_loader, test_loader = get_dataset(args)
model = get_model(args).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
print("Training on ", torch.cuda.get_device_name(0))
train(model, train_loader, test_loader, criterion, optimizer, args.num_epochs, device)