-
Notifications
You must be signed in to change notification settings - Fork 19
/
preprocess.py
274 lines (234 loc) · 11.1 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import argparse
import logging
import os
import re
import collections
import json
import conll
import util
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
logger = logging.getLogger(__name__)
def skip_doc(doc_key):
return False
def normalize_word(word, language):
if language == "arabic":
word = word[:word.find("#")]
if word == "/." or word == "/?":
return word[1:]
else:
return word
def get_sentence_map(segments, sentence_end):
assert len(sentence_end) == sum([len(seg) - 2 for seg in segments]) # of subtokens in all segments
sent_map = []
sent_idx, subtok_idx = 0, 0
for segment in segments:
sent_map.append(sent_idx) # [CLS]
for i in range(len(segment) - 2):
sent_map.append(sent_idx)
sent_idx += int(sentence_end[subtok_idx])
subtok_idx += 1
sent_map.append(sent_idx) # [SEP]
return sent_map
class DocumentState(object):
def __init__(self, key):
self.doc_key = key
self.tokens = []
# Linear list mapped to subtokens without CLS, SEP
self.subtokens = []
self.subtoken_map = []
self.token_end = []
self.sentence_end = []
self.info = [] # Only non-none for the first subtoken of each word
# Linear list mapped to subtokens with CLS, SEP
self.sentence_map = []
# Segments (mapped to subtokens with CLS, SEP)
self.segments = []
self.segment_subtoken_map = []
self.segment_info = [] # Only non-none for the first subtoken of each word
self.speakers = []
# Doc-level attributes
self.pronouns = []
self.clusters = collections.defaultdict(list) # {cluster_id: [(first_subtok_idx, last_subtok_idx) for each mention]}
self.coref_stacks = collections.defaultdict(list)
def finalize(self):
""" Extract clusters; fill other info e.g. speakers, pronouns """
# Populate speakers from info
subtoken_idx = 0
for seg_info in self.segment_info:
speakers = []
for i, subtoken_info in enumerate(seg_info):
if i == 0 or i == len(seg_info) - 1:
speakers.append('[SPL]')
elif subtoken_info is not None: # First subtoken of each word
speakers.append(subtoken_info[9])
# if subtoken_info[4] == 'PRP': # Uncomment if needed
# self.pronouns.append(subtoken_idx)
else:
speakers.append(speakers[-1])
subtoken_idx += 1
self.speakers += [speakers]
# Populate cluster
first_subtoken_idx = 0 # Subtoken idx across segments
subtokens_info = util.flatten(self.segment_info)
while first_subtoken_idx < len(subtokens_info):
subtoken_info = subtokens_info[first_subtoken_idx]
coref = subtoken_info[-2] if subtoken_info is not None else '-'
if coref != '-':
last_subtoken_idx = first_subtoken_idx + subtoken_info[-1] - 1
for part in coref.split('|'):
if part[0] == '(':
if part[-1] == ')':
cluster_id = int(part[1:-1])
self.clusters[cluster_id].append((first_subtoken_idx, last_subtoken_idx))
else:
cluster_id = int(part[1:])
self.coref_stacks[cluster_id].append(first_subtoken_idx)
else:
cluster_id = int(part[:-1])
start = self.coref_stacks[cluster_id].pop()
self.clusters[cluster_id].append((start, last_subtoken_idx))
first_subtoken_idx += 1
# Merge clusters if any clusters have common mentions
merged_clusters = []
for cluster in self.clusters.values():
existing = None
for mention in cluster:
for merged_cluster in merged_clusters:
if mention in merged_cluster:
existing = merged_cluster
break
if existing is not None:
break
if existing is not None:
print("Merging clusters (shouldn't happen very often)")
existing.update(cluster)
else:
merged_clusters.append(set(cluster))
merged_clusters = [list(cluster) for cluster in merged_clusters]
all_mentions = util.flatten(merged_clusters)
sentence_map = get_sentence_map(self.segments, self.sentence_end)
subtoken_map = util.flatten(self.segment_subtoken_map)
# Sanity check
assert len(all_mentions) == len(set(all_mentions)) # Each mention unique
# Below should have length: # all subtokens with CLS, SEP in all segments
num_all_seg_tokens = len(util.flatten(self.segments))
assert num_all_seg_tokens == len(util.flatten(self.speakers))
assert num_all_seg_tokens == len(subtoken_map)
assert num_all_seg_tokens == len(sentence_map)
return {
"doc_key": self.doc_key,
"tokens": self.tokens,
"sentences": self.segments,
"speakers": self.speakers,
"constituents": [],
"ner": [],
"clusters": merged_clusters,
'sentence_map': sentence_map,
"subtoken_map": subtoken_map,
'pronouns': self.pronouns
}
def split_into_segments(document_state: DocumentState, max_seg_len, constraints1, constraints2, tokenizer):
""" Split into segments.
Add subtokens, subtoken_map, info for each segment; add CLS, SEP in the segment subtokens
Input document_state: tokens, subtokens, token_end, sentence_end, utterance_end, subtoken_map, info
"""
curr_idx = 0 # Index for subtokens
prev_token_idx = 0
while curr_idx < len(document_state.subtokens):
# Try to split at a sentence end point
end_idx = min(curr_idx + max_seg_len - 1 - 2, len(document_state.subtokens) - 1) # Inclusive
while end_idx >= curr_idx and not constraints1[end_idx]:
end_idx -= 1
if end_idx < curr_idx:
logger.info(f'{document_state.doc_key}: no sentence end found; split at token end')
# If no sentence end point, try to split at token end point
end_idx = min(curr_idx + max_seg_len - 1 - 2, len(document_state.subtokens) - 1)
while end_idx >= curr_idx and not constraints2[end_idx]:
end_idx -= 1
if end_idx < curr_idx:
logger.error('Cannot split valid segment: no sentence end or token end')
segment = [tokenizer.cls_token] + document_state.subtokens[curr_idx: end_idx + 1] + [tokenizer.sep_token]
document_state.segments.append(segment)
subtoken_map = document_state.subtoken_map[curr_idx: end_idx + 1]
document_state.segment_subtoken_map.append([prev_token_idx] + subtoken_map + [subtoken_map[-1]])
document_state.segment_info.append([None] + document_state.info[curr_idx: end_idx + 1] + [None])
curr_idx = end_idx + 1
prev_token_idx = subtoken_map[-1]
def get_document(doc_key, doc_lines, language, seg_len, tokenizer):
""" Process raw input to finalized documents """
document_state = DocumentState(doc_key)
word_idx = -1
# Build up documents
for line in doc_lines:
row = line.split() # Columns for each token
if len(row) == 0:
document_state.sentence_end[-1] = True
else:
assert len(row) >= 12
word_idx += 1
word = normalize_word(row[3], language)
subtokens = tokenizer.tokenize(word)
document_state.tokens.append(word)
document_state.token_end += [False] * (len(subtokens) - 1) + [True]
for idx, subtoken in enumerate(subtokens):
document_state.subtokens.append(subtoken)
info = None if idx != 0 else (row + [len(subtokens)])
document_state.info.append(info)
document_state.sentence_end.append(False)
document_state.subtoken_map.append(word_idx)
# Split documents
constraits1 = document_state.sentence_end if language != 'arabic' else document_state.token_end
split_into_segments(document_state, seg_len, constraits1, document_state.token_end, tokenizer)
document = document_state.finalize()
return document
def minimize_partition(partition, extension, args, tokenizer):
input_path = os.path.join(args.input_dir, f'{partition}.{args.language}.{extension}')
output_path = os.path.join(args.output_dir, f'{partition}.{args.language}.{args.seg_len}.jsonlines')
doc_count = 0
logger.info(f'Minimizing {input_path}...')
# Read documents
documents = [] # [(doc_key, lines)]
with open(input_path, 'r') as input_file:
for line in input_file.readlines():
begin_document_match = re.match(conll.BEGIN_DOCUMENT_REGEX, line)
if begin_document_match:
doc_key = conll.get_doc_key(begin_document_match.group(1), begin_document_match.group(2))
documents.append((doc_key, []))
elif line.startswith('#end document'):
continue
else:
documents[-1][1].append(line)
# Write documents
with open(output_path, 'w') as output_file:
for doc_key, doc_lines in documents:
if skip_doc(doc_key):
continue
document = get_document(doc_key, doc_lines, args.language, args.seg_len, tokenizer)
output_file.write(json.dumps(document))
output_file.write('\n')
doc_count += 1
logger.info(f'Processed {doc_count} documents to {output_path}')
def minimize_language(args):
tokenizer = util.get_tokenizer(args.tokenizer_name)
minimize_partition('dev', 'v4_gold_conll', args, tokenizer)
minimize_partition('test', 'v4_gold_conll', args, tokenizer)
minimize_partition('train', 'v4_gold_conll', args, tokenizer)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--tokenizer_name', type=str, default='bert-base-cased',
help='Name or path of the tokenizer/vocabulary')
parser.add_argument('--input_dir', type=str, required=True,
help='Input directory that contains conll files')
parser.add_argument('--output_dir', type=str, required=True,
help='Output directory')
parser.add_argument('--seg_len', type=int, default=128,
help='Segment length: 128, 256, 384, 512')
parser.add_argument('--language', type=str, default='english',
help='english, chinese, arabic')
# parser.add_argument('--lower_case', action='store_true',
# help='Do lower case on input')
args = parser.parse_args()
logger.info(args)
os.makedirs(args.output_dir, exist_ok=True)
minimize_language(args)