forked from INM-6/h5py_wrapper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrapper.py
296 lines (259 loc) · 11.6 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import re
import h5py
if int(re.sub('\.', '', h5py.version.version)) < 230 :
raise ImportError("Using h5py version %s. Version must be >= 2.3.0" % (h5py.version.version))
import numpy
import collections
import quantities as pq
from subprocess import call
import ast
######################################################################
# Wrapper to conveniently store arbitrarily nested python dictionaries
# to HDF5 files. There is an outdated version and a new version:
# a)Outdated: The dictionaries were flattened by joining the keys of
# different levels of the dictionary and then stored as datasets to a
# HDF5 file
# b)New: The dictionaries are stored in an HDF5 file by
# creating groups for every level and a dataset for the value in the
# lowest level
# There is a transform function which simply takes a file created in
# the outdated manner and converts it to a file of the new kind.
# There is a function storing and loading an example dictionary.
# IMPORTANT NOTE:
# h5py uses numpy.arrays to load datasets since this enables users to
# load only parts of a dataset. this means all lists will be converted
# to arrays when they are loaded from an h5 file. currently there is
# no option to change this behaviour. you need to do this manually
# after loading the file.
# (see also http://alfven.org/wp/2011/11/psa-why-using-dataset-value-is-discouraged-in-h5py/)
######################################################################
######################################################################
# a) Outdated version
def load_h5_old(filename, sep='_') :
'''
Loads h5-file and extracts the dictionary within it.
Outputs:
dict - dictionary, one or several pairs of string and any type of variable,
e.g dict = {'name1': var1,'name2': var2}
'''
f = h5py.File(filename, 'r')
flat_dict = {}
for k, v in f.items() :
value = numpy.array(v[:])
value = list(v[:])
if len(value) :
flat_dict[k] = value[0]
else :
flat_dict[k] = value
f.close()
dic = unflatten(flat_dict, separator=sep)
return dic
######################################################################
# b) New Version
# Auxiliary functions
def delete_group(f, group) :
try:
f = h5py.File(f, 'r+')
try:
del f[group]
f.close()
except KeyError:
f.close()
except IOError:
pass
def node_exists(f, key):
f = h5py.File(f, 'r')
exist = key in f
f.close()
return exist
def dict_to_h5(d, f, overwrite_dataset, compression=None, **keywords) :
if 'parent_group' in keywords :
parent_group = keywords['parent_group']
else:
parent_group = f.parent
for k, v in d.items() :
if isinstance(v, collections.MutableMapping) :
if parent_group.name != '/':
group_name = parent_group.name + '/' + str(k)
else:
group_name = parent_group.name + str(k)
group = f.require_group(group_name)
dict_to_h5(v, f, overwrite_dataset, parent_group=group, compression=compression)
else:
if not str(k) in parent_group.keys() :
create_dataset(parent_group, k, v, compression=compression)
else:
if overwrite_dataset == True:
del parent_group[str(k)] # delete the dataset
create_dataset(parent_group, k, v, compression=compression)
else:
print 'Dataset', str(k), 'already exists!'
return 0 # ?
def create_dataset(parent_group, k, v, compression=None):
shp = numpy.shape(v)
if v is None:
parent_group.create_dataset(str(k), data='None', compression=compression)
else:
if isinstance(v, (list, numpy.ndarray)):
if numpy.array(v).dtype.name == 'object':
if len(shp) > 1:
print 'Dataset', k, 'has an unsupported format!'
else:
# store 2d array with an unsupported format by reducing
# it to a 1d array and storing the original shape
# this does not work in 3d!
oldshape = numpy.array([len(x) for x in v])
data_reshaped = numpy.hstack(v)
data_set = parent_group.create_dataset(str(k), data=data_reshaped, compression=compression)
data_set.attrs['oldshape'] = oldshape
data_set.attrs['custom_shape'] = True
elif isinstance(v, pq.Quantity) :
data_set = parent_group.create_dataset(str(k), data=v)
data_set.attrs['_unit'] = v.dimensionality.string
else :
data_set = parent_group.create_dataset(str(k), data=v, compression=compression)
elif isinstance(v, (int, float)) : # ## ignore compression argument for scalar datasets
data_set = parent_group.create_dataset(str(k), data=v)
else:
data_set = parent_group.create_dataset(str(k), data=v, compression=compression)
# ## Explicitely store type of key
_key_type = type(k).__name__
data_set.attrs['_key_type'] = _key_type
def dict_from_h5(f):
# .value converts everything(?) to numpy.arrays
# maybe there is a different option to load it, to keep, e.g., list-type
if h5py.h5i.get_type(f.id) == 5: # check if f is a dataset
if hasattr(f, 'value'):
if 'EMPTYARRAY' in str(f.value): # ## This if-branch exists to enable loading of deprecated hdf5 files
shp = f.value.split('_')[1]
shp = tuple(int(i) for i in shp[1:-1].split(',') if i != '')
return numpy.reshape(numpy.array([]), shp)
elif str(f.value) == 'None':
return None
else:
if len(f.attrs.keys()) > 0 and 'custom_shape' in f.attrs.keys() :
if f.attrs['custom_shape']:
return load_custom_shape(f.attrs['oldshape'], f.value)
else:
return f.value
else:
return numpy.array([])
else:
d = {}
items = f.items()
for name, obj in items :
if h5py.h5i.get_type(obj.id) == 2 : # Check if obj is a group or a dataset
sub_d = dict_from_h5(obj)
d[name] = sub_d
else :
if hasattr(obj, 'value'):
if 'EMPTYARRAY' in str(obj.value):
shp = obj.value.split('_')[1]
shp = tuple(int(i) for i in shp[1:-1].split(',') if i != '')
d[name] = numpy.reshape(numpy.array([]), shp)
elif str(obj.value) == 'None':
d[name] = None
else:
# if dataset has custom_shape=True, we rebuild the original array
if len(obj.attrs.keys()) > 0 :
if 'custom_shape' in obj.attrs.keys() :
if obj.attrs['custom_shape']:
d[name] = load_custom_shape(obj.attrs['oldshape'], obj.value)
elif '_unit' in obj.attrs.keys() :
d[name] = pq.Quantity(obj.value, obj.attrs['_unit'])
elif '_key_type' in obj.attrs.keys() :
# added string_ to handle numpy.string_, TODO: find general soluation for numpy data types
if obj.attrs['_key_type'] not in ['str', 'unicode', 'string_'] :
d[ast.literal_eval(name)] = obj.value
else :
d[name] = obj.value
else:
d[name] = obj.value
else:
d[name] = numpy.array([])
return d
def load_custom_shape(oldshape, oldata):
data_reshaped = []
counter = 0
for l in oldshape:
data_reshaped.append(numpy.array(oldata[counter:counter + l]))
counter += l
return numpy.array(data_reshaped, dtype=object)
# Save routine
def add_to_h5(filename, d, write_mode='a', overwrite_dataset=False, resize=False, dict_label='', compression=None) :
'''
Save dictionary containing data to hdf5 file.
**Args**:
filename: file name of the hdf5 file to be created
d: dictionary to be stored
write_mode: can be set to 'a'(append) or 'w'(overwrite), analog to normal file handling in python (default='a')
overwrite_dataset: whether all datasets should be overwritten if already existing. (default=False)
resize: if True, the hdf5 file is resized after writing all data, may reduce file size, caution: slows down writing (default=False)
dict_label: If given, the dictionary is stored as a group with the given name in the hdf5 file, labels can also given as paths to target lower levels of groups, e.g.: dict_label='test/trial/spiketrains' (default='')
compression: Compression strategy to reduce file size. Legal values are 'gzip', 'szip','lzf'. Can also use an integer in range(10) indicating gzip, indicating the level of compression. 'gzip' is recommended. Caution: This slows down writing and loading of data. Attention: Will be ignored for scalar data.
'''
try:
f = h5py.File(filename, write_mode)
except IOError:
raise IOError('unable to create ' + filename + ' (File accessability: Unable to open file)')
if dict_label != '' :
base = f.require_group(dict_label)
dict_to_h5(d, f, overwrite_dataset, parent_group=base, compression=compression)
else:
dict_to_h5(d, f, overwrite_dataset, compression=compression)
fname = f.filename
f.close()
if overwrite_dataset == True and resize == True:
call(['h5repack', '-i', fname, '-o', fname + '_repack'])
call(['mv', fname + '_repack', fname])
return 0
# Load routine
def load_h5(filename, path='') :
'''
The Function returns a dictionary of all dictionaries that are
stored in the HDF5 File.
**Args**:
filename: file name of the hdf5 file to be loaded
path: argument to access deeper levels in the hdf5 file (default='')
'''
d = {}
try:
f = h5py.File(filename, 'r')
except IOError:
raise IOError('unable to open \"' + filename + '\" (File accessability: Unable to open file)')
if path == '':
d = dict_from_h5(f)
else:
if path[0] == '/':
path = path[1:]
if node_exists(filename, path):
d = dict_from_h5(f[path])
else:
f.close()
raise KeyError('unable to open \"' + filename + '/' + path + '\" (Key accessability: Unable to access key)')
f.close()
return d
######################################################################
# Transform outdated file to new file
def transform_h5(filename, new_filename) :
'''
Transform function which simply takes a file created in
the outdated manner and converts it to a file of the new kind.
'''
x = load_h5_old(filename)
add_to_h5(new_filename, x)
######################################################################
def example():
filename = 'example.hdf5'
d = {}
d['a'] = {'a1': numpy.array([1, 2, 3]),
'a2': 4.0,
'a3': {'a31': 'Test'}}
d['b'] = numpy.arange(0., 0.5, 0.01)
d['c'] = 'string'
# # save dictionary to file
add_to_h5(filename, d)
# ## load dictionary from file
dd = load_h5(filename)
print dd
return 0