-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
53 lines (39 loc) · 2.63 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
CONDA=/BS/mparcham/nobackup/conda/bin/conda
CONDA_ENV_NAME=MyPie
export IMAGENET_PATH='/scratch/inf0/user/mparcham/ILSVRC2012/'
export VOC_PATH='/scratch/inf0/user/mparcham/VOC2007/'
export WATERBIRDS_PATH='/scratch/inf0/user/mparcham/WaterBirds100/'
# SEED 720 is usually used for debug runs.
SEEDS=(720)
TEMPERATURES=(1.0) # Sweep over Logit Temperature for KlDiv Loss
EXP_COEFS=(1.0) # Sweep over Explanation loss coefficients
for SEED in ${SEEDS[@]}
do
for TEMPERATURE in ${TEMPERATURES[@]}
do
for EXP_COEF in ${EXP_COEFS[@]}
do
##### T: B-cos D169 --> S: B-cos R18 Distilled on ImageNet (Full), Temperature = 1.0, e2KD Coef = 1.0
# GPU=4; RUN_NAME="resnet_18-GtL0.0-TeL1.0-TeT${TEMPERATURE}-EXP${EXP_COEF}-MethodBcosWeight-ExpOftop1-seed=${SEED}"
##### T: B-cos D169 --> S: B-cos R18 Distilled on ImageNet (with 50 Shots per class only), Temperature = 1.0, e2KD Coef = 1.0
# GPU=1; RUN_NAME="resnet_18_FS50ShotBS32Sed42-GtL0.0-TeL1.0-TeT${TEMPERATURE}-EXP${EXP_COEF}-MethodBcosWeight-ExpOftop1-seed=${SEED}"
##### T: B-cos D169 --> S: B-cos R18 Distilled on ImageNet (with 200 Shots per class only), Temperature = 1.0, e2KD Coef = 1.0
# GPU=1; RUN_NAME="resnet_18_FS200ShotBS64Sed42-GtL0.0-TeL1.0-TeT${TEMPERATURE}-EXP${EXP_COEF}-MethodBcosWeight-ExpOftop1-seed=${SEED}"
##### T: B-cos D169 --> S: B-cos ViT Tiny Distilled on ImageNet, Temperature = 1.0, e2KD Coef = 1.0
GPU=1; RUN_NAME="bcos_simple_vit_ti_patch16_224-GtL0.0-TeL1.0-TeT${TEMPERATURE}-EXP${EXP_COEF}-MethodBcosWeight-ExpOftop1-seed=${SEED}"
echo "--> on ${GPU} GPUS Running ${RUN_NAME}"
######## Use this one for running locally
${CONDA} run -n ${CONDA_ENV_NAME} --no-capture-output python3 train.py \
--dataset ImageNet --base_network final_live --experiment_name ${RUN_NAME} \
--explanation_logging --explanation_logging_every_n_epochs 1 \
--wandb_logger --wandb_project "Teaching-Extensions" --track_grad_norm \
\
######## Use this for running on Slurm (with submitit API)
# ${CONDA} run -n ${CONDA_ENV_NAME} --no-capture-output python3 run_with_submitit.py \
# --gpus ${GPU} --nodes 1 --timeout 6.5 --job_name ${RUN_NAME} --partition "gpu22,gpu20" \
# --dataset ImageNet --base_network final_live --experiment_name ${RUN_NAME} \
# --explanation_logging --explanation_logging_every_n_epochs 1 \
# --wandb_logger --wandb_project "Teaching-Extensions" --track_grad_norm \
done
done
done