-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathignat_loader.py
64 lines (48 loc) · 1.88 KB
/
ignat_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# iNatularist image loader
import torch.utils.data as data
from PIL import Image
import os
import json
import numpy as np
def default_loader(path):
return Image.open(path).convert('RGB')
class IGNAT_Loader(data.Dataset):
def __init__(self, root, ann_file, transform=None, target_transform=None,
loader=default_loader):
# assumes classes and im_ids are in same order
# load annotations
print('Loading annotations from: ' + os.path.basename(ann_file))
with open(ann_file) as data_file:
ann_data = json.load(data_file)
# set up the filenames and annotations
imgs = [aa['file_name'] for aa in ann_data['images']]
im_ids = [aa['id'] for aa in ann_data['images']]
if 'annotations' in ann_data.keys():
# if we have class labels
classes = [aa['category_id'] for aa in ann_data['annotations']]
else:
# otherwise dont have class info so set to 0
classes = [0]*len(im_ids)
idx_to_class = {cc['id']: cc['name'] for cc in ann_data['categories']}
print('\t' + str(len(imgs)) + ' images')
print('\t' + str(len(idx_to_class)) + ' classes')
self.ids = im_ids
self.root = root
self.imgs = imgs
self.classes = classes
self.idx_to_class = idx_to_class
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
path = self.root + self.imgs[index]
target = self.classes[index]
im_id = self.ids[index]
img = self.loader(path)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target, im_id
def __len__(self):
return len(self.imgs)