-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetropolis.py
1071 lines (903 loc) · 40.2 KB
/
metropolis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Facebook, Inc. and its affiliates.
# Original copyright notice:
# nuScenes dev-kit.
# Code written by Oscar Beijbom, 2018.
import json
import sys
import time
from os import path
from typing import Tuple, List, Optional, Dict, Any, Union
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.axes import ( # @manual=fbsource//third-party/pypi/matplotlib:matplotlib
Axes,
)
from PIL import Image
from pyquaternion import Quaternion
from skimage.morphology import dilation
from skimage.segmentation import find_boundaries
from skimage.transform import warp
from .utils import pathmgr
from .utils.color_map import get_colormap, plot_deph_normalized_colormap
from .utils.data_classes import LidarPointCloud, Box, Box2d, EquiBox2d
from .utils.geo import TopocentricConverter
from .utils.geometry_utils import (
view_points,
view_points_eq,
transform_matrix,
box_in_image,
inverse_map_eq,
)
# GDAL import is optional
try:
from osgeo import gdal
except ModuleNotFoundError:
gdal = None
PYTHON_VERSION = sys.version_info[0]
if not PYTHON_VERSION == 3:
raise ValueError("Metropolis dev-kit only supports Python version 3.")
EYE4 = np.eye(4)
class Metropolis:
def __init__(
self,
split: str,
dataroot: str,
verbose: bool = True,
map_resolution: float = 0.1,
):
self.split = split
self.dataroot = dataroot
self.verbose = verbose
self.table_names = [
"category",
"attribute",
"instance",
"sensor",
"calibrated_sensor",
"ego_pose",
"panoptic",
"scene",
"sample",
"sample_data",
"sample_annotation",
"sample_annotation_2d",
]
assert pathmgr.exists(
self.table_root
), f"Database version not found: {self.table_root}"
start_time = time.time()
if verbose:
print(f"======\nLoading Metropolis tables for split {self.split}...")
# Explicitly assign tables to help the IDE determine valid class members.
self.category = self.__load_table__("category")
self.attribute = self.__load_table__("attribute")
self.instance = self.__load_table__("instance")
self.sensor = self.__load_table__("sensor")
self.calibrated_sensor = self.__load_table__("calibrated_sensor")
self.ego_pose = self.__load_table__("ego_pose")
self.panoptic = self.__load_table__("panoptic")
self.scene = self.__load_table__("scene")
self.sample = self.__load_table__("sample")
self.sample_data = self.__load_table__("sample_data")
self.sample_annotation = self.__load_table__("sample_annotation")
self.sample_annotation_2d = self.__load_table__("sample_annotation_2d")
self.geo = self.__load_table__("geo")
# Initialize the colormap which maps from class names to RGB values.
self.colormap = get_colormap()
if verbose:
for table in self.table_names:
print(f"{len(getattr(self, table))} {table},")
print(f"Done loading in {time.time() - start_time:.3f} seconds.\n======")
# Make reverse indexes for common lookups.
self.__make_reverse_index__(verbose)
@property
def table_root(self) -> str:
"""Returns the folder where the tables are stored for the relevant version."""
return path.join(self.dataroot, self.split)
def __load_table__(self, table_name: str) -> List[Dict[str, Any]]:
"""Loads a table."""
with pathmgr.open(path.join(self.table_root, f"{table_name}.json")) as f:
table = json.load(f)
return table
def __make_reverse_index__(self, verbose: bool) -> None: # noqa C901
"""De-normalizes database to create reverse indices for common cases.
Args:
verbose: Whether to print outputs.
"""
start_time = time.time()
if verbose:
print("Reverse indexing ...")
# Store the mapping from token to table index for each table.
self._token2ind = {}
for table in self.table_names:
self._token2ind[table] = {}
for ind, member in enumerate(getattr(self, table)):
self._token2ind[table][member["token"]] = ind
# Decorate (adds short-cut) sample_annotation table with for category name.
for record in self.sample_annotation:
inst = self.get("instance", record["instance_token"])
record["category_name"] = self.get("category", inst["category_token"])[
"name"
]
# Do the same for sample_annotation_2d
for record in self.sample_annotation_2d:
inst = self.get("instance", record["instance_token"])
record["category_name"] = self.get("category", inst["category_token"])[
"name"
]
# Decorate (adds short-cut) sample_data with sensor information.
for record in self.sample_data:
cs_record = self.get("calibrated_sensor", record["calibrated_sensor_token"])
sensor_record = self.get("sensor", cs_record["sensor_token"])
record["sensor_modality"] = sensor_record["modality"]
record["channel"] = sensor_record["channel"]
# Reverse-index samples with sample_data, annotations and panoptic
for record in self.sample:
record["data"] = {}
record["anns"] = []
record["anns_2d"] = []
for record in self.sample_data:
sample_record = self.get("sample", record["sample_token"])
sample_record["data"][record["channel"]] = record["token"]
for ann_record in self.sample_annotation:
sample_record = self.get("sample", ann_record["sample_token"])
sample_record["anns"].append(ann_record["token"])
for ann_record_2d in self.sample_annotation_2d:
sample_record = self.get("sample", ann_record_2d["sample_token"])
sample_record["anns_2d"].append(ann_record_2d["token"])
for pano_record in self.panoptic:
sample_record = self.get("sample", pano_record["sample_token"])
sample_record["panoptic_token"] = pano_record["token"]
if verbose:
print(
f"Done reverse indexing in {time.time() - start_time:.1f} seconds.\n======"
)
def get(self, table_name: str, token: str) -> Dict[str, Any]:
"""Returns a record from table in constant runtime.
Args:
table_name: Table name.
token: Token of the record.
Returns:
Table record. See README.md for record details for each table.
"""
assert table_name in self.table_names, f"Table {table_name} not found"
return getattr(self, table_name)[self.getind(table_name, token)]
def getind(self, table_name: str, token: str) -> int:
"""This returns the index of the record in a table in constant runtime.
Args:
table_name: Table name.
token: Token of the record.
Returns:
The index of the record in table, table is an array.
"""
return self._token2ind[table_name][token]
def field2token(self, table_name: str, field: str, query: Any) -> List[str]:
"""This function queries all records for a certain field value, and returns
the tokens for the matching records.
Warning: this runs in linear time.
Args:
table_name: Table name.
field: Field name. See README.md for details.
query: Query to match against. Needs to type match the content of the
query field.
Returns:
List of tokens for the matching records.
"""
matches = []
for member in getattr(self, table_name):
if member[field] == query:
matches.append(member["token"])
return matches
def get_box(self, sample_annotation_token: str) -> Box:
"""Instantiates a Box class from a sample annotation record.
Args:
sample_annotation_token: Unique sample_annotation identifier.
"""
record = self.get("sample_annotation", sample_annotation_token)
return Box(
record["translation"],
record["size"],
Quaternion(record["rotation"]),
name=record["category_name"],
token=record["token"],
)
def get_box_2d(self, sample_annotation_2d_token: str) -> Box2d:
"""Instantiates a Box2d class from a 2D sample annotation record.
Args:
sample_annotation_token: Unique sample_annotation identifier.
Returns:
The box object.
"""
record = self.get("sample_annotation_2d", sample_annotation_2d_token)
return Box2d(
record["bounding_box"], name=record["category_name"], token=record["token"]
)
def get_boxes(
self, sample_data_token: str, get_all_visible: bool = False
) -> List[Box]:
"""Instantiates Boxes for all annotation for a particular sample_data record
Args:
sample_data_token: Unique sample_data identifier.
get_all_visible: If true, retrieve annotations for all objects that are
potentially visible from this sample_data (i.e. those that have a
2D annotation in the corresponding 360 image). Otherwise, only
return objects that have been annotated in 3D directly on this sample.
Return:
A list of boxes.
"""
sd_record = self.get("sample_data", sample_data_token)
curr_sample_record = self.get("sample", sd_record["sample_token"])
if get_all_visible:
instance_tokens = {
self.get("sample_annotation_2d", sa_2d_token)["instance_token"]
for sa_2d_token in curr_sample_record["anns_2d"]
}
return list(
map(
self.get_box,
(
sa["token"]
for sa in self.sample_annotation
if sa["instance_token"] in instance_tokens
),
)
)
else:
return list(map(self.get_box, curr_sample_record["anns"]))
def get_boxes_2d(self, sample_data_token: str) -> List[Box2d]:
"""Instantiates 2D Boxes for all annotation for a particular sample_data record
Args:
sample_data_token: Unique sample_data identifier.
Return:
A list of 2D Boxes.
"""
sd_record = self.get("sample_data", sample_data_token)
curr_sample_record = self.get("sample", sd_record["sample_token"])
return list(map(self.get_box_2d, curr_sample_record["anns_2d"]))
def get_color(self, category_name: str) -> Tuple[int, int, int]:
"""Provides the default colors based on the category names.
Args:
category_name: Name of the category.
Returns:
Color for the category, or (0, 0, 0) if the category is not found.
"""
return self.colormap.get(category_name, (0, 0, 0))
def get_sample_data_path(self, sample_data_token: str) -> str:
"""Returns the path to a sample_data."""
sd_record = self.get("sample_data", sample_data_token)
return path.join(self.dataroot, sd_record["filename"])
def get_sample_data(
self,
sample_data_token: str,
selected_anntokens: Optional[List[str]] = None,
selected_2d_anntokens: Optional[List[str]] = None,
use_flat_vehicle_coordinates: bool = False,
get_all_visible_boxes: bool = False,
# pyre-fixme[11]: Annotation `array` is not defined as a type.
) -> Tuple[
str,
List[Box],
Optional[Union[List[Box2d], List[EquiBox2d]]],
Optional[np.array],
]:
"""Returns the data path as well as all annotations related to that sample_data.
Note that the boxes are transformed into the current sensor's coordinate frame.
Args:
sample_data_token: Sample_data token.
selected_anntokens: If provided only return the selected 3D annotation.
selected_2d_anntokens: If provided only return the selected 2D annotation.
use_flat_vehicle_coordinates: Instead of the current sensor's coordinate
frame, use ego frame which is aligned to z-plane in the world.
get_all_visible_boxes: If true, retrieve 3D boxes for all objects that are
potentially visible from this sample_data (i.e. those that have a
2D annotation in the corresponding 360 image). Otherwise, only
return boxes that have been annotated in 3D directly on this sample.
Returns:
data_path: Path to the data file.
boxes: 3D bounding boxes.
boxes_2d: 2D bounding boxes (only returned for cameras).
camera_intrinsic: Camera intrinsics.
"""
# Retrieve sensor & pose records
sd_record = self.get("sample_data", sample_data_token)
cs_record = self.get("calibrated_sensor", sd_record["calibrated_sensor_token"])
sensor_record = self.get("sensor", cs_record["sensor_token"])
pose_record = self.get("ego_pose", sd_record["ego_pose_token"])
is_camera_like = (
sensor_record["modality"] == "depth"
or sensor_record["modality"] == "camera"
)
data_path = self.get_sample_data_path(sample_data_token)
if (
sensor_record["modality"] == "camera"
or sensor_record["modality"] == "depth"
):
cam_intrinsic = np.array(cs_record["camera_intrinsic"])
imsize = (sd_record["width"], sd_record["height"])
else:
cam_intrinsic = None
imsize = None
#### 3D annotations ####
# Retrieve all sample annotations and map to sensor coordinate system.
if selected_anntokens is not None:
boxes = list(map(self.get_box, selected_anntokens))
else:
boxes = self.get_boxes(sample_data_token, get_all_visible_boxes)
# Make list of Box objects including coord system transforms.
box_list = []
for box in boxes:
if use_flat_vehicle_coordinates:
# Move box to ego vehicle coord system parallel to world z plane.
yaw = Quaternion(pose_record["rotation"]).yaw_pitch_roll[0]
box.translate(-np.array(pose_record["translation"]))
box.rotate(
Quaternion(
scalar=np.cos(yaw / 2), vector=[0, 0, np.sin(yaw / 2)]
).inverse
)
else:
# Move box to ego vehicle coord system.
box.translate(-np.array(pose_record["translation"]))
box.rotate(Quaternion(pose_record["rotation"]).inverse)
# Move box to sensor coord system.
box.translate(-np.array(cs_record["translation"]))
box.rotate(Quaternion(cs_record["rotation"]).inverse)
# For perspective camera-like sensors, check if the box is visible
if is_camera_like and sensor_record["channel"] != "CAM_EQUIRECTANGULAR":
# pyre-fixme[6]: For 2nd argument expected `ndarray[Any, Any]` but
# got `Optional[ndarray[Any, dtype[Any]]]`.
# pyre-fixme[6]: For 3rd argument expected `Tuple[int, int]` but got
# `Optional[Tuple[Any, Any]]`.
if not box_in_image(box, cam_intrinsic, imsize):
continue
box_list.append(box)
#### 2D Annotations, only for cameras ####
box_2d_list = None
if is_camera_like:
if selected_2d_anntokens is not None:
boxes_2d = list(map(self.get_box_2d, selected_2d_anntokens))
else:
boxes_2d = self.get_boxes_2d(sample_data_token)
if sensor_record["channel"] == "CAM_EQUIRECTANGULAR":
# For equirectangular images just return all boxes
box_2d_list = boxes_2d
else:
# For perspective images, project the 2D boxes from the corresponding
# equirectangular image
sample_record = self.get("sample", sd_record["sample_token"])
box_2d_list = []
if "CAM_EQUIRECTANGULAR" in sample_record["data"]:
sd_eq_record = self.get(
"sample_data", sample_record["data"]["CAM_EQUIRECTANGULAR"]
)
cs_eq_record = self.get(
"calibrated_sensor", sd_eq_record["calibrated_sensor_token"]
)
for box_2d in boxes_2d:
box_2d_eq = EquiBox2d.from_box_2d(
box_2d,
Quaternion(cs_eq_record["rotation"]),
Quaternion(cs_record["rotation"]),
# pyre-fixme[6]: For 4th argument expected `ndarray[Any,
# Any]` but got `Optional[ndarray[Any, dtype[Any]]]`.
cam_intrinsic,
(sd_eq_record["width"], sd_eq_record["height"]),
(sd_record["width"], sd_record["height"]),
)
if box_2d_eq is not None:
box_2d_list.append(box_2d_eq)
return data_path, box_list, box_2d_list, cam_intrinsic
def render_pointcloud_in_image(
self,
sample_token: str,
# pyre-fixme[9]: dot_size has type `int`; used as `float`.
dot_size: int = 0.5,
downsample: int = 20,
pointsensor_channel: str = "MVS",
camera_channel: str = "CAM_FRONT",
out_path: Optional[str] = None,
ax: Optional[Axes] = None,
nsweeps: int = 1,
):
"""Scatter-plots a point-cloud on top of equirectangular image.
Args:
sample_token: Sample token.
dot_size: Scatter plot dot size.
downsample: Downsampling factor.
pointsensor_channel: Pointcloud channel name, e.g. 'MVS'.
camera_channel: Camera channel name, e.g. 'CAM_FRONT'.
out_path: Optional path to save the rendered figure to disk.
ax: Optional existing matplotlib axes object to draw on.
nsweeps: Number of sweeps for lidar and radar.
"""
sample_record = self.get("sample", sample_token)
# Here we just grab the front camera and the point sensor.
pointsensor_token = sample_record["data"][pointsensor_channel]
camera_token = sample_record["data"][camera_channel]
points, coloring, im = self.map_pointcloud_to_image(
pointsensor_token,
camera_token,
nsweeps=nsweeps,
)
# Init axes.
if ax is None:
_, ax = plt.subplots(1, 1, figsize=(18, 16), dpi=160)
ax.imshow(im)
ax.scatter(
points[0, 0::downsample],
points[1, 0::downsample],
c=coloring[0::downsample],
s=dot_size,
)
ax.axis("off")
if out_path is not None:
plt.xlim(0, im.size[0])
plt.ylim(im.size[1], 0)
with pathmgr.open(out_path, "wb") as fid:
plt.savefig(fid, bbox_inches="tight", pad_inches=0)
def map_pointcloud_to_image(
self,
pointsensor_token: str,
camera_token: str,
nsweeps: int = 1,
min_dist: float = 1.0,
) -> Tuple:
"""Given a point sensor (e.g. lidar / mvs) token and camera sample_data token,
load point-cloud and map it to an image.
Args:
pointsensor_token: Lidar/mvs sample_data token.
camera_token: Camera sample_data token.
nsweeps: Number of sweeps for lidar and mvs.
min_dist: Distance from the camera below which points are discarded.
Returns:
pointcloud
coloring
image
"""
# Find all relevant records
sd_cam_record = self.get("sample_data", camera_token)
sd_pts_record = self.get("sample_data", pointsensor_token)
cs_cam_record = self.get(
"calibrated_sensor", sd_cam_record["calibrated_sensor_token"]
)
cs_pts_record = self.get(
"calibrated_sensor", sd_pts_record["calibrated_sensor_token"]
)
sample_pts_record = self.get("sample", sd_pts_record["sample_token"])
ego_pose_cam = self.get("ego_pose", sd_cam_record["ego_pose_token"])
ego_pose_pts = self.get("ego_pose", sd_pts_record["ego_pose_token"])
# Load the point cloud
pc, times = LidarPointCloud.from_file_multisweep(
self,
sample_pts_record,
sd_pts_record["channel"],
sd_pts_record["channel"],
nsweeps,
)
# Load the image
with pathmgr.open(
path.join(self.dataroot, sd_cam_record["filename"]), "rb"
) as fid:
im = Image.open(fid)
im.load()
# Transform the point cloud to the camera frame
# 1. From point sensor to world
pc.rotate(Quaternion(cs_pts_record["rotation"]).rotation_matrix)
pc.translate(np.array(cs_pts_record["translation"]))
pc.rotate(Quaternion(ego_pose_pts["rotation"]).rotation_matrix)
pc.translate(np.array(ego_pose_pts["translation"]))
# 2. From world to camera
pc.translate(-np.array(ego_pose_cam["translation"]))
pc.rotate(Quaternion(ego_pose_cam["rotation"]).rotation_matrix.T)
pc.translate(-np.array(cs_cam_record["translation"]))
pc.rotate(Quaternion(cs_cam_record["rotation"]).rotation_matrix.T)
# Project the points to the camera plane / sphere
if sd_cam_record["channel"] == "CAM_EQUIRECTANGULAR":
# Equirectangular mode
depths = np.sqrt((pc.points[:3, :] ** 2).sum(axis=0))
# Do projection
points = view_points_eq(pc.points[:3, :], im.size[0], im.size[1])
else:
# Projective mode
depths = pc.points[2, :]
# Do projection
points = view_points(
pc.points[:3, :],
np.array(cs_cam_record["camera_intrinsic"]),
normalize=True,
)
# Filter out points that are behind the camera, outside the frame or too close
mask = np.ones(depths.shape[0], dtype=bool)
mask = np.logical_and(mask, depths > min_dist)
mask = np.logical_and(mask, points[0, :] > 1)
mask = np.logical_and(mask, points[0, :] < im.size[0] - 1)
mask = np.logical_and(mask, points[1, :] > 1)
mask = np.logical_and(mask, points[1, :] < im.size[1] - 1)
points = points[:, mask]
depths = depths[mask]
return points, depths, im
def render_sample_data( # noqa C901
self,
sample_data_token: str,
axes_limit: float = 40,
ax: Optional[Axes] = None,
nsweeps: int = 1,
out_path: Optional[str] = None,
use_flat_vehicle_coordinates: bool = True,
show_3d_boxes: bool = False,
show_all_visible_3d_boxes: bool = False,
verbose: bool = False,
) -> None:
"""Render sample data onto axis.
Args:
sample_data_token: Sample_data token.
axes_limit: Axes limit for lidar / mvs (measured in meters).
ax: Axes onto which to render.
nsweeps: Number of sweeps for lidar / mvs.
out_path: Optional path to save the rendered figure to disk.
use_flat_vehicle_coordinates: Instead of the current sensor's coordinate
frame, use ego frame which is aligned to z-plane in the world.
show_3d_boxes: When rendering images, the default is to show 2D boxes.
If this is set to True, show 3D boxes instead.
show_all_visible_3d_boxes: If true, when rendering 3D boxes we show all
those that are potentially visible from this sample_data (i.e. those
that have a 2D annotation in the corresponding 360 image). Otherwise,
we only show those that have been annotated directly on this sample.
verbose: Whether to display the image after it is rendered.
"""
# Get sensor modality.
sd_record = self.get("sample_data", sample_data_token)
sensor_modality = sd_record["sensor_modality"]
if sensor_modality == "lidar" or sensor_modality == "mvs":
sample_rec = self.get("sample", sd_record["sample_token"])
chan = sd_record["channel"]
ref_chan = "MVS"
ref_sd_token = sample_rec["data"][ref_chan]
ref_sd_record = self.get("sample_data", ref_sd_token)
# Get aggregated lidar point cloud in lidar frame.
pc, times = LidarPointCloud.from_file_multisweep(
self, sample_rec, chan, ref_chan, nsweeps=nsweeps
)
# By default we render the sample_data top down in the sensor frame.
# This is slightly inaccurate when rendering the map as the sensor frame may not be perfectly upright.
# Using use_flat_vehicle_coordinates we can render the map in the ego frame instead.
if use_flat_vehicle_coordinates:
# Retrieve transformation matrices for reference point cloud.
cs_record = self.get(
"calibrated_sensor", ref_sd_record["calibrated_sensor_token"]
)
pose_record = self.get("ego_pose", ref_sd_record["ego_pose_token"])
ref_to_ego = transform_matrix(
translation=cs_record["translation"],
rotation=Quaternion(cs_record["rotation"]),
)
# Compute rotation between 3D vehicle pose and "flat" vehicle pose (parallel to global z plane).
ego_yaw = Quaternion(pose_record["rotation"]).yaw_pitch_roll[0]
rotation_vehicle_flat_from_vehicle = np.dot(
Quaternion(
scalar=np.cos(ego_yaw / 2), vector=[0, 0, np.sin(ego_yaw / 2)]
).rotation_matrix,
Quaternion(pose_record["rotation"]).inverse.rotation_matrix,
)
vehicle_flat_from_vehicle = np.eye(4)
vehicle_flat_from_vehicle[:3, :3] = rotation_vehicle_flat_from_vehicle
viewpoint = np.dot(vehicle_flat_from_vehicle, ref_to_ego)
else:
viewpoint = np.eye(4)
# Init axes.
if ax is None:
_, ax = plt.subplots(1, 1, figsize=(9, 9))
# Show point cloud.
points = view_points(pc.points[:3, :], viewpoint, normalize=False)
dists = np.sqrt(np.sum(pc.points[:2, :] ** 2, axis=0))
colors = np.minimum(1, dists / axes_limit / np.sqrt(2))
point_scale = 0.2
ax.scatter(points[0, :], points[1, :], c=colors, s=point_scale)
# Show ego vehicle.
ax.plot(0, 0, "x", color="red")
# Get boxes in lidar frame.
_, boxes, _, _ = self.get_sample_data(
ref_sd_token,
use_flat_vehicle_coordinates=use_flat_vehicle_coordinates,
get_all_visible_boxes=show_all_visible_3d_boxes,
)
# Show boxes.
for box in boxes:
c = np.array(self.get_color(box.name)) / 255.0
box.render(ax, view=np.eye(4), colors=(c, c, c))
# Limit visible range.
ax.set_xlim(-axes_limit, axes_limit)
ax.set_ylim(-axes_limit, axes_limit)
elif sensor_modality == "camera" or sensor_modality == "depth":
# Load boxes and image.
data_path, boxes, boxes_2d, camera_intrinsic = self.get_sample_data(
sample_data_token,
get_all_visible_boxes=show_all_visible_3d_boxes,
)
with pathmgr.open(data_path, "rb") as fid:
data = Image.open(fid)
data.load()
# depthmaps are stored in 16 bit pngs, so it needs to be converted in meters
if sensor_modality == "depth":
data = np.array(data, dtype=np.float32) / 256.0
max_depth_color = 120.0
depth_map_color = plot_deph_normalized_colormap(data, max_depth_color)
data = Image.fromarray(depth_map_color.astype(np.uint8))
# Init axes.
if ax is None:
_, ax = plt.subplots(1, 1, figsize=(9, 16))
# Show image.
ax.imshow(data)
# Show boxes.
if show_3d_boxes:
for box in boxes:
c = np.array(self.get_color(box.name)) / 255.0
if sd_record["channel"] == "CAM_EQUIRECTANGULAR":
box.render_eq(ax, data.size, colors=(c, c, c))
else:
box.render(
ax, view=camera_intrinsic, normalize=True, colors=(c, c, c)
)
else:
for box in boxes_2d:
c = np.array(self.get_color(box.name)) / 255.0
if isinstance(box, Box2d):
box.render(ax, sd_record["width"], color=c, linewidth=1)
else:
box.render(ax, color=c)
# Limit visible range.
ax.set_xlim(0, data.size[0])
ax.set_ylim(data.size[1], 0)
else:
raise ValueError("Error: Unknown sensor modality!")
ax.axis("off")
ax.set_title(sd_record["channel"])
ax.set_aspect("equal")
if out_path is not None:
with pathmgr.open(out_path, "wb") as fid:
plt.savefig(fid, bbox_inches="tight", pad_inches=0, dpi=200)
if verbose:
plt.show()
def render_aerial_view(
self,
sample_data_token: str,
axes_limit: float = 40,
ax: Optional[Axes] = None,
nsweeps: int = 1,
out_path: Optional[str] = None,
verbose: bool = False,
) -> None:
"""Render a view of a point cloud onto an aerial image.
NOTE: this function requires the GDAL library.
Args:
sample_data_token: Sample_data token of the point cloud to render.
axes_limit: Axes limit for lidar / mvs (measured in meters).
ax: Axes onto which to render.
nsweeps: Number of sweeps for lidar / mvs.
out_path: Optional path to save the rendered figure to disk.
verbose: Whether to display the image after it is rendered.
"""
assert gdal is not None, "GDAL is required to use this function"
# Get sensor modality.
sd_record = self.get("sample_data", sample_data_token)
sensor_modality = sd_record["sensor_modality"]
assert (
sensor_modality == "lidar" or sensor_modality == "mvs"
), "This function is only available for pointclouds"
# Get the point cloud
sample_rec = self.get("sample", sd_record["sample_token"])
pc, _ = LidarPointCloud.from_file_multisweep(
self, sample_rec, sd_record["channel"], "MVS", nsweeps=nsweeps
)
# Create coordinates converter
converter = TopocentricConverter(
self.geo["reference"]["lat"],
self.geo["reference"]["lon"],
self.geo["reference"]["alt"],
)
# Transform to global coordinates
ref_sd_record = self.get("sample_data", sample_rec["data"]["MVS"])
cs_record = self.get(
"calibrated_sensor", ref_sd_record["calibrated_sensor_token"]
)
pose_record = self.get("ego_pose", ref_sd_record["ego_pose_token"])
sens_to_ego = transform_matrix(
rotation=Quaternion(cs_record["rotation"]),
translation=np.array(cs_record["translation"]),
)
ego_to_world = transform_matrix(
rotation=Quaternion(pose_record["rotation"]),
translation=np.array(pose_record["translation"]),
)
sens_to_world = np.dot(ego_to_world, sens_to_ego)
pc.transform(sens_to_world)
# Get center and view area corners in geo-referenced coordinates
y_c_lla, x_c_lla, _ = converter.to_lla(
pose_record["translation"][0],
pose_record["translation"][1],
pose_record["translation"][2],
)
y0_lla, x0_lla, _ = converter.to_lla(
pose_record["translation"][0] - axes_limit,
pose_record["translation"][1] - axes_limit,
pose_record["translation"][2],
)
y1_lla, x1_lla, _ = converter.to_lla(
pose_record["translation"][0] + axes_limit,
pose_record["translation"][1] + axes_limit,
pose_record["translation"][2],
)
# Take a crop of the aerial data
crop = gdal.Warp(
"",
path.join(self.dataroot, self.geo["aerial"]["filename"]),
dstSRS="WGS84",
format="VRT",
outputBounds=(x0_lla, y0_lla, x1_lla, y1_lla),
)
img = np.stack(
[crop.GetRasterBand(i + 1).ReadAsArray() for i in range(3)], axis=-1
)
img = Image.fromarray(img)
# Init axes.
if ax is None:
_, ax = plt.subplots(1, 1, figsize=(9, 9))
# Draw the aerial data
ax.imshow(img)
# Project the point cloud to image coordinates
y_p_lla, x_p_lla, _ = converter.to_lla(
pc.points[0, :], pc.points[1, :], pc.points[2, :]
)
gt = crop.GetGeoTransform()
R = np.array([[gt[1], gt[2]], [gt[4], gt[5]]])
t = np.array([[gt[0]], [gt[3]]])
points = np.linalg.solve(R, np.vstack([x_p_lla, y_p_lla]) - t)
# Draw the points
dists = np.sqrt(
np.sum(
(
pc.points[:2, :]
- np.array(pose_record["translation"][:2]).reshape(2, 1)
)
** 2,
axis=0,
)
)
colors = np.minimum(1, dists / axes_limit / np.sqrt(2))
ax.scatter(points[0, :], points[1, :], c=colors, s=0.2)
# Show ego vehicle
ev_pos = np.linalg.solve(R, np.array([[x_c_lla], [y_c_lla]]) - t)
ax.plot(ev_pos[0], ev_pos[1], "x", color="red")
# Limit visible range
ax.set_xlim(0, img.size[0])
ax.set_ylim(img.size[1], 0)
# Produce final output and optionally save
ax.axis("off")
ax.set_title(sd_record["channel"])
ax.set_aspect("equal")
if out_path is not None:
with pathmgr.open(out_path, "wb") as fid:
plt.savefig(fid, bbox_inches="tight", pad_inches=0, dpi=200)
if verbose:
plt.show()
def get_panoptic_mask(
self, sample_data_token: str
) -> Tuple[Dict[str, Any], np.ndarray]:
"""Get the panoptic mask for a given image
Since panoptic masks are originally computed on the equirectangular images,
this function performs a warp operation in case the requested image is a
perspective one (e.g. "CAM_FRONT"), which might introduce small artificats
in the returned mask.
Args:
sample_data_token: Sample_data token of the image.
Returns:
pano_record: The panoptic record dictionary.
pano: The panoptic mask, possibly re-projected to the requested image.
"""
# Get the sample data
sd_record = self.get("sample_data", sample_data_token)
assert (
sd_record["sensor_modality"] == "camera"
), "Panoptic masks can only be computed for images"
# Get the corresponding sample and panoptic records
sample_record = self.get("sample", sd_record["sample_token"])
pano_record = self.get("panoptic", sample_record["panoptic_token"])
# Load the panoptic image
pano_record = self.get("panoptic", sample_record["panoptic_token"])
with pathmgr.open(
path.join(self.dataroot, pano_record["filename"]), "rb"
) as fid:
pano = Image.open(fid)
pano = np.array(pano, copy=True)
# Warp the mask to the requested view if needed
if sd_record["channel"] != "CAM_EQUIRECTANGULAR":
# Get the corresponding equirectangulare image sample data
sd_eq_record = self.get(
"sample_data", sample_record["data"]["CAM_EQUIRECTANGULAR"]
)
# Get the sensor records
cs_eq_record = self.get(
"calibrated_sensor", sd_eq_record["calibrated_sensor_token"]
)
cs_record = self.get(
"calibrated_sensor", sd_record["calibrated_sensor_token"]
)
# 3D transformation CURRENT -> EQ
t_ego_to_eq = transform_matrix(
np.array(cs_eq_record["translation"]),
Quaternion(cs_eq_record["rotation"]),
inverse=True,
)
t_cur_to_ego = transform_matrix(
np.array(cs_record["translation"]), Quaternion(cs_record["rotation"])
)
t_cur_to_eq = np.dot(t_ego_to_eq, t_cur_to_ego)
# Warp the panoptic mask using scikit image
dtype = pano.dtype
pano = warp(
pano,
inverse_map_eq,
map_args={
"transform": t_cur_to_eq,
"intrinsics": np.array(cs_record["camera_intrinsic"]),
"eq_size": (sd_eq_record["width"], sd_eq_record["height"]),
},
output_shape=(sd_record["height"], sd_record["width"]),