This repository has been archived by the owner on Jan 7, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1-data-preprocessing.py
368 lines (192 loc) · 9.68 KB
/
1-data-preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python
# coding: utf-8
# In[1]:
try:
from google.colab import drive
drive.mount('/content/drive')
drive_path = '/content/drive/My\ Drive/'
except ImportError:
drive_path = '.'
# In[2]:
from glob import glob
from pathlib import Path
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import display
import seaborn as sns
# In[3]:
dataset_name = 'cse-cic-ids2018'
dataset_file = f'{dataset_name}.zip'
dataset_path = Path(drive_path, f'datasets/registry.opendata.aws/{dataset_name}')
get_ipython().system('pwd')
print(dataset_path)
# Download the https://www.unb.ca/cic/datasets/ids-2018.html dataset from s3 https://registry.opendata.aws/cse-cic-ids2018/
# In[4]:
get_ipython().system('aws s3 sync --no-sign-request --region eu-central-1 "s3://cse-cic-ids2018/Processed Traffic Data for ML Algorithms/" $dataset_path')
# In[5]:
get_ipython().system('cd $dataset_path && zip $dataset_file *.csv')
# Create local directory to store the dataset files.
# In[6]:
get_ipython().system(' if ! test -r $dataset_name; then mkdir $dataset_name && cp $dataset_path/$dataset_file $dataset_name; fi')
# In[7]:
get_ipython().system('ls -al $dataset_name')
# In[8]:
get_ipython().system(' if test -r $dataset_name/$dataset_file; then cd $dataset_name && unzip $dataset_file && rm -f $dataset_file; fi')
# In[9]:
get_ipython().system('ls -al $dataset_name')
# In[10]:
get_ipython().system('ls -alh $dataset_name')
# In[11]:
get_ipython().system('df -h')
# Perform cleaning and feature selection separately for every data file
# In[12]:
from nd00333.dataset.clean import clean
# In[13]:
import importlib
# In[14]:
importlib.reload(clean)
# Summarize one of the smaller data sets.
#
# The following observations can be made:
#
# 1. 'Flow Byts/s' and 'Flow Pkts/s' columns contain non-numeric values
# 2. 'Init Fwd Win Byts' and 'Init Bwd Win Byts' contain a negative number '-1'
# 3. 'Flow IAT Min' amd 'Fwd IAT Min' contain large absolute negative values
#
# The rows with those values in the respective columns will be removed (1. and 2., note that 2. results in a significant decrease in the number of non-Benign flows for a couple of data sets, e.g. for 'DoS attacks-Hulk', 'DDOS attack-HOIC', 'DDOS attack-LOIC-UDP') or replaced (3.) in the the `get_clean_df` function.
# In[15]:
df = pd.read_csv(f'{dataset_name}/Friday-02-03-2018_TrafficForML_CICFlowMeter.csv')
df = clean.get_clean_df(df, verbose=2)
df['target'] = df.pop('Label')
feature_list = clean.get_feature_list(df, tolerance=0.0001, sample_fraction=0.5)
print(feature_list)
del df
# A 16 GB machine is unable to keep copies of the largest dataset `Thuesday-20-02-2018_TrafficForML_CICFlowMeter.csv` in memory. Therefore some of the low variance and duplicate features found in smaller datasets are removed upfront from the lagest dataset to reduce its size. Moreover the lagest data file contains `extra_features` not present in other data files, and they are therefore removed. Additionally, due to a large number (almost 8 millions) samples if the largest data set a sample of 5% (instead of 50% as in all other data files) is used in the process of feature selection.
# Many people (e.g. Frank Harrell https://twitter.com/f2harrell/status/1137012097391312897?lang=en `Feature selection doesn't work in general because it can't find the right variables and distorts statistical properties. One summary of the evils of stepwise`) claim that no feature selection should be performed. In this case reducing the number of features is necessary due to limited computing resources.
#
# In principle a feature selection should happen on an isolated subset of the data, in order to not involve the test data in any model choices. This approach is not followed strictly here, as the feature selection is performed based on the full dataset, but this is acceptable, since another separate test set https://www.unb.ca/cic/datasets/ids-2017.html is used for the final estimation of the model performance.
#
# The features are selected in `get_feature_list` using an addition process, where features are added on-by-one in the order of importance, only if by adding a feature the performance metrics (the macro average of recall across all target classes) increases by a threshold.
# In[16]:
columns = []
for dataset_file in sorted(glob(f'{dataset_name}/*.csv')):
columns_dataset_file = pd.read_csv(f'{dataset_file}', index_col=0, nrows=0).columns.tolist()
columns_new = set(columns_dataset_file) - set(columns)
if len(columns_new):
print(f'New columns in {dataset_file}', columns_new)
columns.extend(columns_new)
# In[17]:
quasi_constant_features = ['Bwd PSH Flags', 'Fwd URG Flags', 'Bwd URG Flags', 'CWE Flag Count', 'Fwd Byts/b Avg',
'Fwd Pkts/b Avg', 'Fwd Blk Rate Avg', 'Bwd Byts/b Avg', 'Bwd Pkts/b Avg', 'Bwd Blk Rate Avg']
duplicated_features = ['Subflow Fwd Pkts', 'Subflow Bwd Pkts', 'Subflow Fwd Byts', 'Subflow Bwd Byts', 'Fwd Seg Size Avg',
'Bwd Seg Size Avg', 'SYN Flag Cnt', 'ECE Flag Cnt']
extra_features = ['Src IP', 'Src Port', 'Dst Port', 'Dst IP']
# In[18]:
selected_features = {}
for dataset_file in sorted(glob(f'{dataset_name}/*.csv')):
print('#' * 80)
print('New datafile:', dataset_file)
print('#' * 80)
if dataset_file == f'{dataset_name}/Thuesday-20-02-2018_TrafficForML_CICFlowMeter.csv':
columns_to_remove = quasi_constant_features + duplicated_features + extra_features
sample_fraction = 0.05
else:
columns_to_remove = extra_features
sample_fraction = 0.5
columns = pd.read_csv(dataset_file, index_col=0, nrows=0).columns.tolist()
usecols = []
for column in columns:
if column not in columns_to_remove:
usecols.append(column)
df = pd.read_csv(dataset_file, usecols=usecols)
df = clean.get_clean_df(df, verbose=1)
df['target'] = df.pop('Label')
feature_list = clean.get_feature_list(df, tolerance=0.001, sample_fraction=sample_fraction)
del df
selected_features[dataset_file] = feature_list
# Find the union set of selected features across all data files
# In[19]:
selected_features_common = []
for dataset_file, features_list in sorted(selected_features.items()):
print(f'Merging features for {dataset_file}', features_list)
for feature in features_list:
if feature not in selected_features_common:
selected_features_common.append(feature)
# In[20]:
print(f'Number of selected features {len(selected_features_common)}')
for feature in selected_features_common:
print(feature)
# Save selected features data into new csv files
# In[21]:
dataset_name_clean = dataset_name + '-clean'
# In[22]:
get_ipython().system('mkdir -p $dataset_name_clean')
# In[24]:
for dataset_file in sorted(glob(f'{dataset_name}/*.csv')):
file_name = dataset_file.split('/')[-1]
print('#' * 80)
print('New datafile:', dataset_file)
print('#' * 80)
df = pd.read_csv(dataset_file, usecols=selected_features_common + ['Label'])
df = clean.get_clean_df(df, verbose=1)
df.to_csv(f'{dataset_name_clean}/{file_name}', index=False)
# In[25]:
get_ipython().system('ls -al $dataset_name_clean')
# In[26]:
get_ipython().system('ls -alh $dataset_name_clean')
# In[27]:
get_ipython().system('head -2 $dataset_name_clean/*.csv')
# Load all data files into a common dataframe
# In[28]:
df = pd.concat(map(pd.read_csv, glob(f'{dataset_name_clean}/*.csv')))
# In[29]:
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
display(df.head().transpose())
display(df.describe().transpose())
# In[30]:
size = df.groupby(['Label']).size().reset_index(name='count')
display(size)
# In[31]:
size['fraction'] = (df.groupby(['Label']).size()
.reset_index(name='count').apply(lambda x: x['count'] / df.shape[0], axis=1))
display(size)
# In[32]:
size.plot.bar(x='Label', y='fraction')
# Explore correlations between features. In can be noted that there are several groups of highly correlated features (abs(corr)>=0.9), for example:
#
# 1. 'TotLen Bwd Pkts', 'Bwd Pkt Len Max', 'Bwd Pkt Len Std', 'Bwd Header Len', and 'Pkt Len Max'
# 2. 'Pkt Len Std', and 'Pkt Len Max'
# 3. 'Flow Pkts/s', 'Flow Duration', and 'Flow IAT Max'
# 4. 'RST Flag Cnt' and 'ECE Flag Cnt'
#
# These correlations, for the non-Benign labels are explored in more details further below, and since the plots show that the correlation coefficient does not represent a linear relationship, all the above features are kept.
# In[33]:
df_corr = df.corr(method='spearman')
fig, ax = plt.subplots(figsize=(15, 15))
sns.heatmap(df_corr, xticklabels=df_corr.columns, yticklabels=df_corr.columns, annot=True, fmt='.1f', ax=ax)
# In[34]:
def plot_corr(data, x, y, xlim, ylim):
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(15, 15))
data.plot.scatter(x=x, y=y, ax=ax)
ax.set_xlim(xlim)
ax.set_ylim(ylim)
# In[35]:
plot_corr(df[df['Label'] != 'Benign'], 'TotLen Bwd Pkts', 'Bwd Pkt Len Max', xlim=(-1, 1e5), ylim=(-1, 3e3))
# In[36]:
plot_corr(df[df['Label'] != 'Benign'], 'Pkt Len Std', 'Pkt Len Max', xlim=(-1, 1e3), ylim=(-1, 3e3))
# In[37]:
plot_corr(df[df['Label'] != 'Benign'], 'Flow Pkts/s', 'Flow Duration', xlim=(-1, 1e4), ylim=(-1, 1e4))
# In[38]:
plot_corr(df[df['Label'] != 'Benign'], 'RST Flag Cnt', 'ECE Flag Cnt', xlim=(-1, 2), ylim=(-1, 2))
# Save the clean dataset archive
# In[39]:
dataset_clean_file = f'{dataset_name_clean}.zip'
# In[40]:
get_ipython().system('rm -f $dataset_clean_file')
get_ipython().system('zip -r $dataset_clean_file $dataset_name_clean')
# In[41]:
get_ipython().system(' /bin/cp -f $dataset_clean_file $dataset_path')
# In[43]:
get_ipython().system("jupyter nbconvert --to html '1-data-preprocessing.ipynb'")