-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12.cpp
67 lines (52 loc) · 1.19 KB
/
12.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
The sequence of triangle numbers is generated by adding the natural numbers. So
the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten
terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred
divisors?
*/
#include <cmath>
#include <iostream>
#include <string>
using namespace std;
#define N 500
int getDivisors(long n) {
int sum = 0; // one and number itself
for (long i = 2; i < (int)sqrt(n); i++) {
if (n % i == 0) {
sum += 2;
}
}
return sum;
}
int brute_force() {
int n = 1;
int triangle_number = 0;
int s;
while (true) {
triangle_number += n;
s = getDivisors(triangle_number);
if (s > N) {
break;
}
if (s > 100) {
cout << triangle_number << " " << s << " " << n << endl;
}
n++;
}
cout << "RJ: " << triangle_number << " " << s << " " << n << endl;
}
int main(void) {
brute_force();
return 0;
}