-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.tex
199 lines (147 loc) · 5.3 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
\documentclass[UKenglish, aspectratio = 169]{beamer}
\usetheme{OsloMet}
\usepackage{style}
\author[Hansen \& Helsø]
{Nikolai Bjørnestøl Hansen \texorpdfstring{\\}{} Martin Helsø}
\title{Beamer example}
\subtitle{Usage of the theme \texttt{OsloMet}}
\begin{document}
\section{Overview}
% Use
%
% \begin{frame}[allowframebreaks]
%
% if the TOC does not fit one frame.
\begin{frame}{Table of contents}
\tableofcontents
\end{frame}
\section{Mathematics}
\subsection{Theorem}
%% Disable the logo in the lower right corner:
\hidelogo
\begin{frame}{Mathematics}
\begin{theorem}[Fermat's little theorem]
For a prime~\(p\) and \(a \in \mathbb{Z}\) it holds that \(a^p \equiv a \pmod{p}\).
\end{theorem}
\begin{proof}
The invertible elements in a field form a group under multiplication.
In particular, the elements
\begin{equation*}
1, 2, \ldots, p - 1 \in \mathbb{Z}_p
\end{equation*}
form a group under multiplication modulo~\(p\).
This is a group of order \(p - 1\).
For \(a \in \mathbb{Z}_p\) and \(a \neq 0\) we thus get \(a^{p-1} = 1 \in \mathbb{Z}_p\).
The claim follows.
\end{proof}
\end{frame}
%% Enable the logo in the lower right corner:
\showlogo
\subsection{Example}
\begin{frame}{Mathematics}
\begin{example}
The function \(\phi \colon \mathbb{R} \to \mathbb{R}\) given by \(\phi(x) = 2x\) is continuous at the point \(x = \alpha\),
because if \(\epsilon > 0\) and \(x \in \mathbb{R}\) is such that \(\lvert x - \alpha \rvert < \delta = \frac{\epsilon}{2}\),
then
\begin{equation*}
\lvert \phi(x) - \phi(\alpha)\rvert = 2\lvert x - \alpha \rvert < 2\delta = \epsilon.
\end{equation*}
\end{example}
\end{frame}
\section{Highlighting}
\SectionPage
\begin{frame}{Highlighting}
Some times it is useful to \alert{highlight} certain words in the text.
\begin{alertblock}{Important message}
If a lot of text should be \alert{highlighted}, it is a good idea to put it in a box.
\end{alertblock}
You can also highlight with the \structure{structure} colour.
\end{frame}
\section{Lists}
\begin{frame}{Lists}
\begin{itemize}
\item
Bullet lists are marked with a yellow box.
\end{itemize}
\begin{enumerate}
\item
\label{enum:item}
Numbered lists are marked with a black number inside a yellow box.
\end{enumerate}
\begin{description}
\item[Description] highlights important words with blue text.
\end{description}
Items in numbered lists like \enumref{enum:item} can be referenced with a yellow box.
\begin{example}
\begin{itemize}
\item
Lists change colour after the environment.
\end{itemize}
\end{example}
\end{frame}
\section{Effects}
\begin{frame}{Effects}
\begin{columns}[onlytextwidth]
\begin{column}{0.49\textwidth}
\begin{enumerate}[<+-|alert@+>]
\item
Effects that control
\item
when text is displayed
\item
are specified with <> and a list of slides.
\end{enumerate}
\begin{theorem}<2>
This theorem is only visible on slide number 2.
\end{theorem}
\end{column}
\begin{column}{0.49\textwidth}
Use \textbf<2->{textblock} for arbitrary placement of objects.
\pause
\medskip
It creates a box
with the specified width (here in a percentage of the slide's width)
and upper left corner at the specified coordinate (x, y)
(here x is a percentage of width and y a percentage of height).
\end{column}
\end{columns}
\only<1, 3>
{
\begin{textblock}{0.3}(0.45, 0.55)
\includegraphics[width = \textwidth]{example-image-a}
\end{textblock}
}
\end{frame}
\section{References}
\begin{frame}[allowframebreaks]{References}
\begin{thebibliography}{}
% Article is the default.
\setbeamertemplate{bibliography item}[book]
\bibitem{Hartshorne1977}
R.~Hartshorne.
\newblock \emph{Algebraic Geometry}.
\newblock Springer-Verlag, 1977.
\setbeamertemplate{bibliography item}[article]
\bibitem{Artin1966}
M.~Artin.
\newblock On isolated rational singularities of surfaces.
\newblock \emph{Amer. J. Math.}, 80(1):129--136, 1966.
\setbeamertemplate{bibliography item}[online]
\bibitem{Vakil2006}
R.~Vakil.
\newblock \emph{The moduli space of curves and Gromov--Witten theory}, 2006.
\newblock \url{http://arxiv.org/abs/math/0602347}
\setbeamertemplate{bibliography item}[triangle]
\bibitem{AM1969}
M.~Atiyah and I.~Macdonald.
\newblock \emph{Introduction to commutative algebra}.
\newblock Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont., 1969
\setbeamertemplate{bibliography item}[text]
\bibitem{Fraleigh1967}
J.~Fraleigh.
\newblock \emph{A first course in abstract algebra}.
\newblock Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967
\end{thebibliography}
\end{frame}
\end{document}