diff --git a/theories/abel.v b/theories/abel.v index 17e5f2d..8ce6a48 100644 --- a/theories/abel.v +++ b/theories/abel.v @@ -824,7 +824,7 @@ Proof. by rewrite /numfield; case: splitting_num_field => //= ? [? []]. Qed. Lemma char_numfield (p : {poly rat}) : [char (numfield p)] =i pred0. Proof. exact: char_ext. Qed. -Hint Resolve char_numfield : core. +#[global] Hint Resolve char_numfield : core. Lemma normal_numfield (p : {poly rat}) : normalField 1 {: numfield p}. Proof. @@ -1193,11 +1193,11 @@ Proof. by rewrite -size_poly_eq0 size_poly_example_int. Qed. Lemma poly_example_neq0 : poly_example != 0. Proof. by rewrite -size_poly_eq0 size_poly_example. Qed. -Hint Resolve poly_example_neq0 : core. +#[local] Hint Resolve poly_example_neq0 : core. Lemma poly_example_monic : poly_example \is monic. Proof. by rewrite monicE lead_coefE !pesimp size_poly_example. Qed. -Hint Resolve poly_example_monic : core. +#[local] Hint Resolve poly_example_monic : core. Lemma irreducible_example : irreducible_poly poly_example. Proof. @@ -1205,7 +1205,7 @@ rewrite poly_exampleEint; apply: (@eisenstein 2) => // [|||i]; rewrite ?lead_coefE ?size_poly_example_int ?pesimp//. by move: i; do 6!case=> //. Qed. -Hint Resolve irreducible_example : core. +#[local] Hint Resolve irreducible_example : core. Lemma separable_example : separable_poly poly_example. Proof. @@ -1216,7 +1216,7 @@ have size_deriv_example : size poly_example^`() = 5%N. rewrite gtNdvdp -?size_poly_eq0 ?size_deriv_example//. by rewrite (eqp_size eqq) ?size_poly_example. Qed. -Hint Resolve separable_example : core. +#[local] Hint Resolve separable_example : core. Lemma prime_example : prime (size poly_example).-1. Proof. by rewrite size_poly_example. Qed. @@ -1255,7 +1255,7 @@ Proof. apply/eqP => /(congr1 (fun p => p.[0])). by rewrite deriv_poly_example !pesimp => /eqP; compute. Qed. -Hint Resolve deriv_poly_example_neq0 : core. +#[local] Hint Resolve deriv_poly_example_neq0 : core. Definition alpha : algR := Num.sqrt (2%:R / Num.sqrt 5%:R). diff --git a/theories/xmathcomp/map_gal.v b/theories/xmathcomp/map_gal.v index 0c70e6a..10f8600 100644 --- a/theories/xmathcomp/map_gal.v +++ b/theories/xmathcomp/map_gal.v @@ -358,7 +358,7 @@ rewrite -(@normalField_img _ _ E)// ?galois_normalW//. Qed. End Prodv. -Hint Resolve normalField_refl : core. +#[global] Hint Resolve normalField_refl : core. Section map_hom. Variables (F0 : fieldType) (L L' : splittingFieldType F0). @@ -696,7 +696,7 @@ Lemma normalClosureSl E F : (E <= normalClosure E F)%VS. Proof. by rewrite (subv_trans (field_subvMr _ _) (prodv_sub_normalClosure _ _)). Qed. -Hint Resolve normalClosureSl : core. +#[local] Hint Resolve normalClosureSl : core. Lemma normalClosureSr E F : (F <= normalClosure E F)%VS. Proof. exact: subv_trans (field_subvMl _ _) (prodv_sub_normalClosure _ _). Qed. @@ -711,7 +711,7 @@ under eq_bigr => s' do have -> : (s \o s')%VF = 'R%act s' s by []. have /(reindex_astabs 'R _) : s \in ('N(kAEndf E | 'R))%g by rewrite astabsR/=. by move/(_ _ _ _ (fun i => i @: (E * F))%AS); rewrite !big_prodv_eq_aspace => <-. Qed. -Hint Resolve normalClosure_normal : core. +#[local] Hint Resolve normalClosure_normal : core. Lemma normalClosure_separable E F : separable E F -> separable E (normalClosure E F). @@ -725,7 +725,7 @@ Proof. move=> sepEF; rewrite /galois. by rewrite normalClosureSl normalClosure_separable// normalClosure_normal. Qed. -Hint Resolve normalClosure_galois : core. +#[local] Hint Resolve normalClosure_galois : core. Lemma normalClosureP E F K' : (E <= K')%VS -> (F <= K')%VS -> normalField E K' -> (normalClosure E F <= K')%VS. @@ -773,7 +773,7 @@ Lemma solvable_ext_refl E : solvable_ext E E. Proof. by apply/solvable_extP; exists E; rewrite subvv galois_refl/= galvv solvable1. Qed. -Hint Resolve solvable_ext_refl : core. +#[local] Hint Resolve solvable_ext_refl : core. Lemma sub_solvable_ext F K E : (E <= F)%VS -> solvable_ext K F -> solvable_ext K E. @@ -837,10 +837,10 @@ Qed. End normalClosure. -Hint Resolve normalClosureSl : core. -Hint Resolve normalClosureSr : core. -Hint Resolve normalClosure_normal : core. -Hint Resolve solvable_ext_refl : core. +#[global] Hint Resolve normalClosureSl : core. +#[global] Hint Resolve normalClosureSr : core. +#[global] Hint Resolve normalClosure_normal : core. +#[global] Hint Resolve solvable_ext_refl : core. Lemma aimg_normalClosure (F0 : fieldType) (L L' : splittingFieldType F0) (iota : 'AHom(L, L')) (K E : {subfield L}) :