-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRF_measurements.tex
1330 lines (1066 loc) · 63.2 KB
/
RF_measurements.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[8pt]{extarticle}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage[table,x11names,dvipsnames,table]{xcolor}
\usepackage{caption}
\usepackage{multicol}
\usepackage{colortbl}
\usepackage{parskip}
\usepackage{tikz}
\usetikzlibrary{calc}
\usepackage{makecell} % Needed for the Gape command
\usepackage{array}
\usepackage{tabularx}
\usepackage{textcomp}
% --------------------------------------
% Set the margins
% --------------------------------------
\usepackage[top=2cm,left=1cm,right=1cm,bottom=2cm]{geometry}
% --------------------------------------
% Multicolumn figure
% --------------------------------------
\newenvironment{Figure}
{\par\medskip\noindent\minipage{\linewidth}}
{\endminipage\par\medskip}
% --------------------------------------
% Define the colors
% --------------------------------------
\definecolor{BlockBackground}{HTML}{E0F4E0}
\definecolor{Header}{HTML}{35B983}
\definecolor{row1}{HTML}{BFEFDA}
\rowcolors{2}{row1!75}{white}
\newcommand{\coloredTablesOn}{\rowcolors{2}{row1!75}{white}} %coloro le tabelle in modo alternato
\newcommand{\coloredTablesOff}{\rowcolors{2}{}{}} %non coloro le tabelle
% --------------------------------------
% Create Fancytable
% --------------------------------------
\newcommand{\chline}[1]{\arrayrulecolor{#1}\hline}
\setlength{\tabcolsep}{10pt} % Separation between columns in the tables
\setlength{\arrayrulewidth}{2pt} % Width of the rules for the tables
%%Standard fancy -------------------------------
\newenvironment{fancytable}[1]
{\def\arraystretch{1.3}
\tabularx{\linewidth}{cX}
\rowcolor{Header}
\multicolumn{2}{c}{\textcolor{white}{\large\bfseries \Gape[1mm][1mm]{#1}}}\\}
{\endtabularx}
%%Full fancy -------------------------------
\newenvironment{fullfancytable}[1]
{\def\arraystretch{1.3}
\tabularx{\linewidth}{cX}
\rowcolor{Header}
\multicolumn{2}{c}{\textcolor{white}{\large\bfseries \Gape[1mm][1mm]{#1}}}\\}
{\endtabularx}
%%Splitted fancy -------------------------------
\newenvironment{splittedfancytable}[2]
{\def\arraystretch{1.3}
\tabularx{\linewidth}{XX}
\rowcolor{Header}
\textcolor{white}{\large\bfseries #1}& \textcolor{white}{\large\bfseries #2}\\
}
{\endtabularx}
% --------------------------------------
% Set the header/footer
% --------------------------------------
\usepackage{fancyhdr}
\pagestyle{fancy}
\lfoot{\textbf{Matteo Franceschini}}
\cfoot{\textbf{Politecnico di Milano}}
\rfoot{\textbf{Updated:} \today}
\renewcommand{\footrulewidth}{0.4pt}
\renewcommand{\headrulewidth}{0pt}
% -------------------------------------------------
% Page header
% -------------------------------------------------
\def\fullwidthheader#1{
\begin{tikzpicture}[overlay, remember picture]
\draw let \p1 = (current page.west),%
\p2 = (current page.east) in
node[minimum width=\x2-\x1,
minimum height=2cm,
draw,
rectangle,
fill=Header,
draw=Header,
anchor=north west,
align=left,
text width=\x2-\x1]
at ($(current page.north west)$)
{\fontsize{20}{22}\selectfont\bfseries\color{white}\quad #1};
\end{tikzpicture}
}
% -------------------------------------------------
% Custom Chapters
% -------------------------------------------------
\newcommand{\newtopic}[1] %----------NEW TOPIC
{
\begin{center}
\vspace*{0.5cm}
{\Huge\bfseries #1}
\vspace*{0.5cm}
\end{center}
}
\newcommand{\newsubtopic}[1] %-----------NEW SUBTOPIC
{
\vspace*{0.5cm}
{\Large\bfseries #1}
}
\newcommand{\newsubsubtopic}[1] %-----------NEW SUBSUBTOPIC
{
\vspace*{0.2cm}
\underline{\large \textbf{#1}}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BEGIN DOCUMENT
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\fullwidthheader{RF MEASUREMENTS\,\,CHEAT\,\,SHEET}
\newtopic{Transmission Lines Parameters}
%\begin{center}
% \vspace*{0.5cm}
% {\Large\bfseries Transmission Lines Parameters}
%\end{center}
\begin{multicols}{2}
\centering
\begin{fancytable}{General}
$ Z_0=\eta=\frac{E_0}{H_0}=\frac{j\omega\mu}{\gamma}$& Intrinsic impedance of the medium, the ratio between the electric and the magnetic field, measured in ohm.\\
$\lambda=\frac{2\pi}{\beta}$& The wavelength is the distance between two maximums or minimums on the sinusoid of the progressive or regressive wave.\\
$\gamma= \sqrt{j\omega\mu(\sigma+j\omega\epsilon)}$& In which
\begin{itemize}
\item $\mu$ is the magnetic permeability
\item $\sigma$ the conducibility
\item $\epsilon$ is the permittivity
\end{itemize}\\
$\gamma=\alpha+j\beta$&In which
\begin{itemize}
\item $\alpha$ is the attenuation constant in $\left[ \frac{Np}{m}\right] $
\item $\beta$ is the phase constant in $\left[ \frac{rad}{m}\right] $
\end{itemize}\\
$tan(\phi)=\frac{\sigma}{\omega\epsilon}$ & It can be used to understand whether a material is a good dielectric ($tan(\phi)<<1$) or a good conductor ($tan(\phi)>>1$)\\
$\Gamma=\frac{Z_{load}-Z_0}{Z_{load}-Z_0}$& Reflection coefficient. A short circuit gives $\Gamma=-1$, while and open has $\Gamma=1$\\
\chline{Header}
\end{fancytable}
\begin{fancytable}{Lossless Transmission Line}
$\sigma=0$& This consist in having $\alpha=0$ and $\beta=\omega\sqrt{\mu\epsilon}$ \\
$\eta=\sqrt{\frac{\mu}{\gamma}}$& The intrinsic impedance becomes a \textbf{real} number\\
$\nu=\frac{\omega}{\beta}=\frac{1}{\sqrt{\mu\epsilon}}$& Propagation speed\\
$\lambda=\frac{\nu}{f}$& The frequency rises but widens wrt the propagation speed and therefore the medium.\\
\chline{Header}
\end{fancytable}
\begin{fancytable}{Lossy Transmission Line}
$\sigma\neq0$& This consist in having $\alpha=Re\left| \gamma\right| $ and $\beta= Im \left| \gamma\right|$ \\
$\eta=\sqrt{\frac{j\omega\mu}{\sigma+j\omega\epsilon}}$& The intrinsic impedance has a phase that can vary between 0 and 45 degrees.\\
$\nu=\frac{\omega}{\beta}$& Propagation speed has the same definition, but obiously different values than in the lossless case.\\
$\lambda=\frac{\nu}{f}=\frac{2\pi}{\beta}$& The frequency rises but widens wrt the propagation speed and therefore the medium.\\
\chline{Header}
\end{fancytable}
\end{multicols}
\newtopic{The scattering Matrix}
The relation between the vectors a and b, whose i-th components are the power waves $a_{i}$ and $b_{i}$ respectively, can be expressed using the S-parameter matrix S:
$b=S\cdot a$
\coloredTablesOff
\begin{multicols}{2}
\begin{equation}
{\begin{pmatrix}b_{1}\\ b_{2}\end{pmatrix}}={\begin{pmatrix}\color{red}S_{11}&\color{cyan}S_{12}\\\color{cyan}S_{21}&\color{red}S_{22}\end{pmatrix}}
{\begin{pmatrix}a_{1}\\a_{2}\end{pmatrix}}
\end{equation}
\begin{Figure}
\centering
\includegraphics[width=0.5\linewidth]{gfx/twoport}
\captionof{figure}{The circuit}
\label{fig:circuit_image}
\end{Figure}
\begin{small}
\begin{itemize}
\item[] \textit{\color{red}{S11 FW Reflection (Input match)}}
\item[] \textit{\color{red}{S22 RW Reflection (Output match)}}
\item[] \textit{\color{cyan}{S21 FW Transmission (Gain/loss)}}
\item[] \textit{\color{cyan}{S12 RW Transmission (Isolation)}}
\end{itemize}
\end{small}
\end{multicols}
\coloredTablesOn
\begin{fancytable}{Important Parameters}
$VSWR=\frac{1+\left| \Gamma\right| }{1-\left| \Gamma\right| }=\frac{1+\left| S_{11}\right| }{1-\left| S_{11}\right| }$ & Input VSWR, the ratio of the highest and the lowest peak of the standing wave.\\
$RL=-20 log_{10}(\left| S_{11}\right| )$&Return loss, the amount of power reflected.\\
$IG_{Forward}=20 log_{10}(\left| S_{21}\right| )$& Forward insertion gain or attenuation\\
$IG_{Reverse}=20 log_{10}(\left| S_{12}\right| )$& Reverse insertion gain or attenuation\\
\chline{Header}
\end{fancytable}
\begin{fancytable}{Important Proprieties}
\texttt{LOSSLESS} & The scattering matrix of a lossless network is \textbf{unitary}, $\left| det[S] \right|=1$, that is, $P_{out}=P_{in}$ or $S\cdot S^T=I$. It is also lossless if the transmission parameters (like $S_{12}$) are purely complex. \\
\texttt{RECIPROCAL}& It is satisfied if there are \textbf{no anisotropic elements}. In this case, the matrix is symmetric: $A^T=A$\\
\texttt{MATCHED} & A network is matched when there are no differences of impedance along the path, and therefore the diagonal of the S matrix is zero.\\
\chline{Header}
\end{fancytable}
\pagebreak
\newtopic{3-Port matching theorem}
It is not possibile to realize a 3-port device without loss, reciprocal and completely matched.
Let's consider the lossles and matched case (also known as circulator), therefore we can have two different scenarios, due to the fact that $S\cdot S^T=I$. The input power at one port goes out from the next port.
\coloredTablesOff
\begin{multicols}{2}
\centering
\textbf{Clockwise circulator}
\begin{equation}
{\begin{pmatrix}
\color{red}{S_{11}} &\color{cyan}{S_{21}} &\color{red}S_{33}\\
\color{red}{S_{12}} &\color{red}{S_{22}} &\color{cyan}S_{32}\\
\color{cyan}S_{13} &\color{red}S_{23} &\color{red}{S_{33}}\\
\end{pmatrix}}
\to
{\begin{pmatrix}
0 & e^{j\alpha} &0\\
0&0 &e^{j\beta} \\
e^{j\gamma} &0 &0\\
\end{pmatrix}}
\end{equation}
\textbf{Counterclockwise circulator}
\begin{equation}
{\begin{pmatrix}
\color{red}{S_{11}} &\color{red}{S_{21}} &\color{cyan}S_{33}\\
\color{cyan}{S_{12}} &\color{red}{S_{22}} &\color{red}S_{32}\\
\color{red}S_{13} &\color{cyan}S_{23} &\color{red}{S_{33}}\\
\end{pmatrix}}
\to
{\begin{pmatrix}
0 & 0 &e^{j\alpha}\\
e^{j\beta}&0 &0 \\
0 & e^{j\gamma} &0\\
\end{pmatrix}}
\end{equation}
\end{multicols}
\newtopic{4-Port matching theorem}
Let's consider a 4-port device, \textbf{reciprocal} and \textbf{lossless}. If two ports are matched and not coupled (there is no power transfer between them), the other two ports are also matched and not coupled. A four port device of this kind would have a Scattering matrix like the following
\begin{multicols}{2}
\begin{Figure}
\centering
\includegraphics[width=0.5\linewidth]{gfx/4port}
\captionof{figure}{The 4 port circuit}
\label{fig:4port}
\end{Figure}
\begin{equation}
{\begin{pmatrix}
S_{11} &S_{21} &S_{31}&S_{41} \\
S_{12} &S_{22} &S_{32}&S_{24} \\
S_{13} &S_{23} &0 &0 \\
S_{14} &S_{24} &0 &0
\end{pmatrix}}
\end{equation}
To have it lossless ($S\cdot S^T=I$) it is needed $\left| S_{11}\right|^2=\left| S_{12}\right|^2=\left| S_{22}\right|^2=0 $
\end{multicols}
The real device that satisfies the 4-port matching theorem is the directional coupler in Figure \ref{fig:4port}.
\begin{multicols}{2}
\begin{equation}
{\begin{pmatrix}
S_{11} &S_{21} &S_{31}&S_{41}\\
S_{12} &S_{22} &S_{32}&S_{24}\\
S_{13} &S_{23} &S_{33}&S_{43}\\
S_{14} &S_{24} &S_{34}&S_{44}
\end{pmatrix}}
\end{equation}
\begin{small}
\begin{itemize}
\item[] \textit{\color{red}{Reflection Coefficients}}
\item[] \textit{\color{cyan}{Transmission Coefficients}}
\end{itemize}
\end{small}
\end{multicols}
\newpage
\fullwidthheader{RF MEASUREMENTS\,\,EXERCISES\,\,TIP\& TRICKS}
\newtopic{Directional Coupler}
The scattering matrix is
\begin{multicols}{2}
\begin{equation}
{{\begin{pmatrix}
S_{11} &S_{21} &S_{31}&S_{41}\\
S_{12} &S_{22} &S_{32}&S_{42}\\
S_{13} &S_{23} &S_{33}&S_{43}\\
S_{14} &S_{24} &S_{34}&S_{44}
\end{pmatrix}}
\to
\begin{pmatrix}
0 &h &0&k\\
h &0 &k&0\\
0 &k &0&h\\
k &0 &h&0
\end{pmatrix}}
\end{equation}
with:
$k=S_{14}=S_{41}$ the coupling coefficient
$h=S_{21}=S_{12}=\sqrt{1-\left|k \right|^2 }e^{j\varphi}$ the transmission coefficient.
\end{multicols}
\vspace{1mm}
\begin{multicols}{2}
\coloredTablesOn
\begin{fullfancytable}{Important Parameters}
\texttt{Transmission loss} &$L=10 log_{10}(\frac{P_{in}}{P_{out}})=20 log_{10}\left|\frac{1}{S_{21}} \right|$\\
\texttt{Isolation} &$I=10 log_{10}(\frac{P_{in}}{P_{3}})=20 log_{10}\left|\frac{1}{S_{31}} \right|$\\
\texttt{Coupling Factor}& $K=C=10 log_{10}(\frac{P_{in}}{P_{4}})=20 log_{10}\left|\frac{1}{S_{41}} \right| $ \\
\texttt{Directivity }& $D(dB)= I(dB)-K(dB)-L(dB) =20log_{10}\left|\frac{S_{21}\cdot S_{32}}{S_{31}} \right| $ \\
\texttt{VSWR}&$VSWR=\frac{1+\left| \Gamma\right| }{1-\left| \Gamma\right| }=\frac{1+\left| S_{11}\right| }{1-\left| S_{11}\right| }$\\
\chline{Header}
\end{fullfancytable}
\coloredTablesOff
\begin{Figure}
\centering
\includegraphics[width=0.8\linewidth]{gfx/directionalcoupler}
\captionof{figure}{The 4 port circuit}
\label{fig:4port}
\end{Figure}
\end{multicols}
\newsubtopic{Creating the scattering matrix}
If it's ideal (), $S_{31}=S_{42}$.
If it's \textbf{lossless}, $S*S^*=I$, or $S_{11}^2+S_{21}^2=1$, $S_{12}^2+S_{22}^2=1$ and $S_{11}*S_{12}+S_{21}*S_{22}=0$, that is: $S_{11}^2=S_{12}^2=S_{22}^2=0$. In a lossless medium the characteristic impedance is real and the propagation constant $\gamma$ is only imaginary. In a lossy medium, on the other hand, $\gamma$ is complex and the phase is always \textgreater0.
If it's \textbf{reciprocal}, it's simmetric wrt the diagonal $S_{xx}$: there are no anisotropic elements.
\newsubtopic{Calculating the reflection coefficient at port 1}
The reflection coefficient at port 1 is given by $b_1$. We can write the equations from the scattering matrix:
\begin{equation}
\left\{\begin{array}{c}
b_1=0\cdot a_1 +h\cdot a_2 + 0\cdot a_3 +k\cdot a_4\\
b_2=h\cdot a_1 +0\cdot a_2 + k\cdot a_3 +0\cdot a_4\\
b_3=0\cdot a_1 +k\cdot a_2 + 0\cdot a_3 +h\cdot a_4\\
b_4=k\cdot a_1 +0\cdot a_2 + h\cdot a_3 +0\cdot a_4\\
\end{array} \right.
\to
\left\{\begin{array}{c}
b_1=h\cdot a_2 +k\cdot a_4\\
b_2=h\cdot a_1 +k\cdot a_3\\
b_3=k\cdot a_2 +h\cdot a_4\\
b_4=k\cdot a_1 +h\cdot a_3\\
\end{array} \right.
\label{eq:scattering_matrix_system}
\end{equation}
If, for example, port 4 has a perfectly adapted load, we can simplify Eq.\ref{eq:scattering_matrix_system} by eliminating everything related with port 4, that is:
\begin{equation}
\left\{\begin{array}{c}
b_1=h\cdot a_2 +k\cdot a_4\\
b_2=h\cdot a_1 +k\cdot a_3\\
b_3=k\cdot a_2 +h\cdot a_4\\
b_4=k\cdot a_1 +h\cdot a_3\\
\end{array} \right.
\to
\left\{\begin{array}{l}
b_1=h\cdot a_2 \\
b_2=h\cdot a_1 +k\cdot a_3\\
b_3=k\cdot a_2\\
\end{array}
\right.
\label{eq:scattering_matrix_system_simplified}
\end{equation}
Once we have done this, we need to calculate the reflections on all ports that may have it (those with a perfectly matched load won't reflect). Let's suppose we have an open circuit on port 3 and a load L on port 2. We have:
\begin{equation}
\left\{\begin{array}{l}
a_2=\Gamma_L\cdot b_2\\
a_3=\Gamma_{OC}\cdot b_3=b_3\\
\end{array} \right.
\label{eq:reflections}
\end{equation}
Let's do some calculation with Eq. \ref{eq:scattering_matrix_system_simplified} and \ref{eq:reflections} and we get
\begin{equation*}
b_1= \frac{\Gamma_L \cdot h^2}{k^2\cdot\Gamma_L-1}\cdot a_1
\end{equation*}
That is, the reflection at port 1, wrt the reflection on the load:
\begin{equation}
\Gamma_1=\frac{b_1}{a_1}=\frac{\Gamma_L \cdot h^2}{k^2\cdot\Gamma_L-1}
\end{equation}
\pagebreak
Fun facts:
\begin{itemize}
\item $\Gamma$ inverts its sign every $\lambda/4$ distance on the line
\item $\Gamma$ of a short circuit is $-1$, while an open has $1$.
\end{itemize}
\newsubtopic{Reflection Coefficient tuning}
There are some possibilities:
\begin{itemize}
\item $\Gamma_1=0$ is reached with $\Gamma_L=0$ and therefore the load impedance should be matched with the transmission line.
\item $\left. \Gamma_1\right|_{maximum}$ is obtained by calculating the partial derivative of $\Gamma_1$ wrt $\Gamma_L$ and finding the maximum.
\end{itemize}
\pagebreak
\newtopic{Reflectometry}
\begin{multicols}{2}
\coloredTablesOn
\begin{fullfancytable}{Ideal Reflectometer}
\texttt{Directivity }& Infinite, $S_{14}=0, S_{23}=0$ \\
\texttt{Matching of couplers} & Perfect:$\Gamma_k=0$, $S_{kk}=0$\\
\texttt{Matching of detectors} &Perfect:$\Gamma_3=0$,$\Gamma_4=0$, the receivers have the same characteristic impedance.\\
\texttt{Perfect detector}& No phase shift nor attenuation. \\
\chline{Header}
\end{fullfancytable}
\coloredTablesOff
\begin{Figure}
\centering
\includegraphics[width=\linewidth]{gfx/reflectometer}
\captionof{figure}{A reflectometer}
\label{fig:reflectometer}
\end{Figure}
\end{multicols}
\newsubtopic{Ideal reflectometer}
The ideal reflectometer has, as listed in the table above, a number of ideal features, but it need to be calibrated anyway: in fact, the scattering parameters, the first time, are unknown.
For this purpose, we just need to connect a known load, to extract them.
\newsubtopic{Real reflectometer}
\begin{multicols}{2}
Figure \ref{fig:reflectometer_internal} shows a reflectometer internal structure example.
The test frequency is generated by a variable frequency Carrier Wave (CW) source and its power level is set using a variable attenuator. The position of switch SW1 sets the direction in which the test signal passes through the DUT. Initially consider that SW1 is at position 1 so that the test signal is incident on the DUT at P1 which is appropriate for measuring $S_{11}$ and $S_{21}$. \textbf{Note that DC1+splitter1 and DC2+splitter2 are, in fact, the circuit of Figure \ref{fig:reflectometer}, each one, in which the left direct coupler is substituted with the splitter.}
The test signal is fed by SW1 to the common port of splitter 1, one arm (the reference channel) feeding a reference receiver for P1 (RX REF1) and the other (the test channel) connecting to P1 via the directional coupler DC1, PC1 and A1.
The third port of DC1 couples off the power reflected from P1 via A1 and PC1, then feeding it to test receiver 1 (RX TEST1).
As for now, this is a one-port reflectometer. If we connect A2 to PC2 instead of connecting it to ground, we are using a two port reflectometer.
Similarly, signals leaving P2 pass via A2, PC2 and DC2 to RX TEST2. RX REF1, RX TEST1, RX REF2 and RXTEST2 are known as \textbf{coherent receivers} as they share the same reference oscillator, and they are capable of measuring the test signal's amplitude and phase at the test frequency. All of the complex receiver output signals are fed to a processor which does the mathematical processing and displays the chosen parameters and format on the phase and amplitude display.
\begin{Figure}
\centering
\includegraphics[width=\linewidth]{gfx/vnainternal}
\captionof{figure}{The internal structure of a VNA}
\label{fig:reflectometer_internal}
\end{Figure}
\end{multicols}
A network analyzer has connectors on its front panel, but the measurements are seldom made at the front panel: usually some test cables will connect from the front panel to the device under test (DUT).
The length of those cables will introduce a time delay (and corresponding phase shift, affecting VNA measurements) and will also introduce some attenuation. The same is true for cables and couplers inside the network analyzer: moreover, all these factors will change with temperature.
Calibration usually involves measuring known standards and using those measurements to compensate for \textbf{systematic errors}. Only systematic errors can be corrected: random errors, such as connector repeatability, can not be corrected by the user calibration.
There are several different methods of calibration.
\begin{itemize}
\item \textbf{SOLT} : which is an acronym for \textbf{Short, Open, Load, Thru}, is the simplest method. As the name suggests, this requires access to known standards with a short circuit, open circuit, a precision load (usually 50 ohms) and a through connection. The SOLT calibration method is useful for coaxial measurements but less suitable for waveguide measurements, where it is difficult to obtain an open circuit or a load, or for measurements on non-coaxial test fixtures, where the same problems with finding suitable standards exists.
\item \textbf{TRL(through-reflect-line calibration)}: This technique is useful for microwave, noncoaxial environments such as fixture, wafer probing, or waveguide. TRL uses a transmission line, significantly longer in electrical length than the through line, of known length and impedance as one standard. TRL also requires a high-reflection standard (usually, a short or open) whose impedance does not have to be well characterized, but it must be electrically the same for both test ports.
\end{itemize}
The simplest calibration that can be performed on a network analyzer is a transmission measurement. This gives no phase information, and so gives similar data to a scalar network analyzer. The simplest calibration that can be performed on a network analyzer, whilst providing phase information is a 1-port calibration (S11 or S22, but not both). This accounts for the three systematic errors which appear in 1-port reflectivity measurements:
Directivity-error resulting from the portion of the source signal that never reaches the DUT.
Source match?errors resulting from multiple internal reflections between the source and the DUT.
Reflection tracking-error resulting from all frequency dependence of test leads, connections, etc.
In a typical 1-port reflection calibration, the user measures three known standards, usually an open, a short and a known load. From these three measurements the network analyzer can account for the three errors above.
A more complex calibration is a full 2-port reflectivity and transmission calibration. For two ports there are 12 possible systematic errors analogous to the three above. The most common method for correcting for these involves measuring a short, load and open standard on each of the two ports, as well as transmission between the two ports.
\newsubtopic{Detector types}
The detector is the circuit that actually converts the signal in something readable by the processor, as in Figure \ref{fig:reflectometer_internal}.
There are two types of reflectometers (network analyzers):
\begin{itemize}
\item Scalar analyzer
\item Vector analyzer
\end{itemize}
The scalar analyzer only detects intensity, but loses completely any information regarding phase.
The vector analyzer has the capability of detecting the phases between the signals.
\newsubsubtopic{Broadband Diode Detector}
\coloredTablesOn
\begin{splittedfancytable}{PROs}{CONs}
Easy to make it broadband&Has no phase information\\
Inepensive compared to tuned receiver & higher noise floor\\
Good for measuring frequency-translating devices& False responses\\
Improves dynamic range by increasing power & \\
Acceptable sensitivity / dynamic range & \\
\chline{Header}
\end{splittedfancytable}
\coloredTablesOff
\newsubsubtopic{Narrowband detector - Tuned Receiver}
\coloredTablesOn
\begin{splittedfancytable}{PROs}{CONs}
Best sensitivity / dynamic range& Costly\\
Provides harmonic / spurious signal rejection & Complex \\
Improves dynamic range by increasing power,
decreasing IF bandwidth, or averaging& \\
Trade off noise floor and measurement speed& \\
Harmonic immunity& \\
\chline{Header}
\end{splittedfancytable}
\coloredTablesOff
\newsubtopic{Measuring error modeling}
The errors can be divided in different categories:
\begin{itemize}
\item \textbf{Systematic errors} that can be fixed with forward and reverse calibration, therefore 12 terms:
\begin{itemize}
\item \textbf{Crosstalk} between DUT ports 1 and 2 or in every high isolation device (switch, coupler) or high dynamic range devices (some filter stopbands)
\item Finite \textbf{directivity} of the couplers
\item \textbf{Source match} with couplers, switches and splitters
\item \textbf{Load match}, the receiver with the rest of the instrument
\item Transmission frequency response
\item Reflection frequency response
\end{itemize}
\item \textbf{Random errors}, that can't be corrected:
\begin{itemize}
\item Instrument noise
\item Connector and switch repeatability
\end{itemize}
\item \textbf{Drift errors}, due to system performance changing after a calibration has been done, primarly caused by temperature variation.
\end{itemize}
\newsubtopic{Crosstalk issues calculations}
Crosstalk over the DUT gives problems to the readings of $S_{12}$ and $S_{21}$: it sums in phase and anti-phase with these values, depending on the frequency. It does not modify the readings of $S_{11}$ and $S_22$.
To give a numeric estimate of the influence of crosstalk on the reading, we could pretend to know the value of $S_{21}$ and, with this, adding a contribute $C$, due to crosstalk. Therefore
\begin{equation}
b_4=(S_{21}+C)\cdot k \cdot a_1
\label{eq:crosstalk_error}
\end{equation}
In which $C=c\cdot e^{\varphi(f)}$ is a complex number with modulus $c$ equal to the \textbf{crosstalk attenuation} (how much of the signal 1 goes to port 2 without going through the DUT) and frequency-variable phase. $k$ is the coupler's coupling factor, and can will be compensated by the instrument, because it's a construction parameter.
Given Eq.\ref{eq:crosstalk_error}, we can now estimate the measured $S_12$, with
\begin{equation}
S_{12Measured}=S_{12Real}+C=S_{12Real}+c\cdot e^{\varphi(f)}
\end{equation}
\newpage
\newtopic{Power Sensors}
In RF we measure power, because is constant: voltage and current are variable through space.
We can measure power with two different types of sensors
\begin{itemize}
\item Thermal sensors, in which power is measured by estimating the heating:
\begin{itemize}
\item Calorimeter
\item Bolometer (thermsistor)
\item Thermocouples
\end{itemize}
\item Non-linear devices, in which power is measured by reading a voltage after a non-linear conversion:
\begin{itemize}
\item Diodes
\end{itemize}
\end{itemize}
\newsubtopic{Calorimeter}
\coloredTablesOn
\begin{splittedfancytable}{PROs}{CONs}
The most accurate, used in national standards and calibrations&Very long time constant, not suitable for every case.\\
In some versions, it can work also with big amounts of power & It can be quite big.\\
\chline{Header}
\end{splittedfancytable}
\coloredTablesOff
\newsubsubtopic{Single calorimeter}
It is just a thermally isolated part of a waveguide, a load, a liquid and a temperature sensor.
When the RF power reaches the calorimeter, it heats up the liquid and the power can be retrieved from
\begin{equation}
P= J\cdot c \cdot m \cdot \frac{dT}{dt}+\frac{T}{R_{th}}
\end{equation}
in which $P$ is the RF power to be measured, $J=4.18\cdot 10^3 \frac{J}{kcal}$ is the conversion between joule and calories, $c$ is the specific heat of the liquid (for water $1\frac{kcal}{Kg\cdot \textcelsius}$)
\newsubsubtopic{Twin calorimeters}
\begin{multicols}{2}
This device uses two calorimeters to compare the RF power connected to one calorimeter with a DC power connected to the other.
When the temperature difference is zero, it means that the two calorimeters are receiving the same power, and this gives the RF power measurement.
The formula to retrieve the power from the calorimeter is the same as before, but it could easily obtained by the DC voltage and current applied.
\linebreak
\begin{Figure}
\centering
\includegraphics[width=0.5\linewidth]{gfx/twincalorimeters}
\captionof{figure}{A twin calorimeter}
\label{fig:twincalorimeter}
\end{Figure}
\end{multicols}
\newsubsubtopic{Flow calorimeter}
This device can handle a big amount of power and is composed by a quartz tube carrying flowing water.
The power into the waveguide can be calculated by measuring the temperature of the water before and after the the calorimeter: the temperature rise is proportional to the hitting power. The formula is
\begin{equation}
P=q\cdot c\cdot (T_2-T_1)\cdot J
\end{equation}
in which $q$ is the mass fluid flow rate, $c$ is the liquid specific heat, $J$ the conversion between joule and calories, and $T_2-T_1$ the temperature difference.
In this case, like in the one of the twin calorimeters, the RF heating can be compared to a DC heating by means of heating wires within the quartz tube: this provides an identical temperature distribution, that can be used for calibration.
\pagebreak
\newsubtopic{Bolometer}
\coloredTablesOn
\begin{splittedfancytable}{PROs}{CONs}
Very sensitive&Errors due to mismatch: the \textit{available power} could not be the maximum.\\
Good resolution&Errors due to substitution: DC and RF power do not give the same effect in the bolometer\\
Sensitive to any form of energy&Errors due to efficiency: a small part of the RF power can be dissipated on the guide walls and supports.\\
Allows the readings of pulsed sources& \\
\chline{Header}
\end{splittedfancytable}
\coloredTablesOff
The bolometers are resistors very sensitive to temperature variations and they are generally incorporated into a Wheatstone bridge.
\begin{multicols}{2}
A dc bias current (given by $E_2$, in Figure \ref{fig:bolometer}) is applied to the thermsistor to raise its temperature via Joule heating, such that the \textbf{resistance is matched} to the waveguide characteristic impedance. After applying microwave power, the \textbf{bias current is reduced} to return the bolometer to its (matched) resistance in the absence of microwave power. The change in the dc power is then equal to the absorbed microwave power. To reject the effect of ambient temperature changes, the active (measuring) element is in a bridge circuit with an (other) identical element not exposed to microwaves; variations in temperature common to both elements do not affect the accuracy of the reading. In this case we talk about a \textbf{balanced system}. The average response time of the bolometer allows convenient measurement of the power of a pulsed source.
\begin{Figure}
\centering
\includegraphics[width=0.8\linewidth]{gfx/bolometer}
\captionof{figure}{The scheme of a bolometer}
\label{fig:bolometer}
\end{Figure}
\end{multicols}
The power applied to the bridge (when balanced) is given by
\begin{equation}
P_{DC}=\left(\frac{\left. V_{E_2}\right|_{DC}}{2}\right)^2\cdot\frac{1}{R_0}=\frac{\left.V_{E_2}^{2}\right|_{DC}}{4\cdot R_0}
\end{equation}
And the power of the RF signal applied to the thermsistors can be obtained byt the voltage difference between the DC and the "RF on" condition, apart from a $k$ constant, called \textit{calibration efficiency}:
\begin{equation}
P_{RF}=\frac{\left.V_{E_2}^{2}\right|_{DC}-\left.V_{E_2}^{2}\right|_{RF}}{4\cdot k\cdot R_0}
\end{equation}
\newsubsubtopic{Microcalorimeters}
Microcalorimeters are used to calibrate thermistor type sensors.
A microcalorimeter consists of a thin-walled line section connected to the thermistor sensor being calibrated. A thermopile measures the temperature difference between the thermistor and a dummy sensor or temperature reference. By measuring the temperature change due to the RF loss in the sensor and the input line, the efficiency of the sensor can be calculated.
\newsubsubtopic{Available power}
\begin{multicols}{2}
For a low frequency circuit, as in Figure \ref{fig:availablepower}, formed by a generator with impedance $Z_G$ and voltage $e_S$ (Thevenin equivalent), the power delivered to a load $Z_L$ is maximum when $Z_L = Z_G^*$ (complex conjugate).
\begin{multicols}{2}
In RF, the same situation arises, but this time is connected to the reflection coefficient $\Gamma$.
As for low frequency, we can demonstrate that the power to the load is maximum when the generator is in \textbf{conjugate matching}.
\begin{Figure}
\centering
\includegraphics[width=0.9\linewidth]{gfx/availablepowergamma}
\captionof{figure}{The RF case}
\label{fig:availablepowergamma}
\end{Figure}
\end{multicols}
That is, the load reflection coefficient is equal to the complex conjugate of the reflection coefficient of the generator:
\begin{equation}
\Gamma_L=\Gamma_G^*
\end{equation}
\begin{Figure}
\centering
\includegraphics[width=0.8\linewidth]{gfx/availablepower}
\captionof{figure}{The power from a generator to a load}
\label{fig:availablepower}
\end{Figure}
\end{multicols}
And the power transferred to the load is the maximum power transferable $P_0$, equal to
\begin{equation}
P_{generator}=\frac{P_{load}}{1-\left|\Gamma_G\right|^2}
\end{equation}
\newsubsubtopic{Thermocouples}
Thermocouples are based on the fact that dissimilar metals generate a voltage due to temperature differences at a hot and a cold junction of the two metals.
Typical values for the thermoelectric power are in the range of $250\mu V/$\textcelsius$ $ and, with its $0.4$\textcelsius$/mW$ thermal resistance, yelds to $100\mu V/mW$. Therefore
\begin{equation}
S=P_{TH}\cdot R_{TH}
\end{equation}
\textbf{Warning: if the junction reaches 500\textcelsius, differential thermal expansion causes the chip to fracture.}
Thermal resistance combines with thermal capacity to form the thermal time constant
\begin{equation}
\tau_{TH}=R_{TH}\cdot C_{TH}
\end{equation}
In the case of thermistor sensors, the DC-substitution process keeps the tiny bead of thermistor at a constant temperature, backing off bias power as RF power is added. This naturally induces minor deviations in the detection characteristic.
In the case of thermocouple sensors, as power is added, the detection microcircuit substrate with its terminating resistor runs at higher temperatures as the RF power increases. Thermocouple power meters solve the need for sensitivity calibration by incorporating a 50 MHz power-reference oscillator whose output power is controlled with great precision ($\pm0.4\%$).
\newsubtopic{Diode sensors}
\coloredTablesOn
\begin{splittedfancytable}{PROs}{CONs}
Good long term stability&Requires a reference source\\
Reasonably linear at low levels&Poor linearity at high levels\\
High dynamic range &Can be inaccurate for modulated and distorted signals\\
Easily integrated in automatic systems &\\
Fast response allowing for envelope power to be tracked&\\
\chline{Header}
\end{splittedfancytable}
\coloredTablesOff
\newsubsubtopic{Single Diode sensors}
\begin{multicols}{2}
\coloredTablesOn
\begin{fancytable}{Key factors}
\texttt{Sensitivity}& Between $0.5mV/\mu W$ and $1mV/\mu W$\\
\texttt{Noise Power Level}& Around $-70dBm$\\
\texttt{Maximum Power} & Less than $-20dBm$ \\
\texttt{Dynamic Range} & Usually $90dB$\\
\chline{Header}
\end{fancytable}
\coloredTablesOff
\begin{Figure}
\centering
\includegraphics[width=0.6\linewidth]{gfx/singlediode}
\captionof{figure}{Multiple diods in series}
\label{fig:single_diode}
\end{Figure}
\end{multicols}
From the diode equation $I_d=I_s\cdot(e^(\frac{V_d}{kT})-1)$, we could develop the Taylor expansion near the zero and, for very small voltage values, we have a linear behavior given by $I_d=I_S\cdot(\frac{V_d}{n\cdot V_T}+\dots)$.
In this approximation, with $V_d<<V_{T}$, the DC component of the current, equal to the average value of I, is equal to
\begin{equation}
I_{DC}=\frac{V_{IN}^2}{4\cdot(n\cdot V_T)^2}
\end{equation}
The differential resistance of the diode in this condition is usually a couple of $k\Omega$ and is given by
\begin{equation}
\frac{1}{R_D}=\frac{\partial I}{\partial V}=\frac{I_S}{n\cdot V_T}
\end{equation}
The power in input, considering a sinusoidal input $V_{IN}$, is given by
\begin{equation}
P_{in}=\frac{V_{IN}^2}{2\cdot R_0}
\label{eq:power_input_diode}
\end{equation}
The voltage coming out of this circuit is proportional to the power applied to the input, following this equation
\begin{equation}
V_{out}=\frac{R_0}{2\cdot n\cdot V_t}P_{RF}=Sensitivity\cdot P_{RF}
\end{equation}
\textbf{This approximation and linearity are valid as long as the voltage on the diode is lower than $V_T$, that is, $25,4mV$, therefore the maximum acceptable voltage in input (and, therefore, power, from Eq.\ref{eq:power_input_diode}) is limited by this. For the exercises, the power per single diode is $-20dbm$}.
\pagebreak
\newsubsubtopic{Series Diode sensors}
\begin{multicols}{2}
\coloredTablesOn
\begin{fancytable}{Key factors}
\texttt{Sensitivity}& Divided by $N$\\
\texttt{Noise Power Level}& Grows by $10log_{10}(N)$\\
\texttt{Maximum Power} & Increased by $N^2$ \\
\texttt{Dynamic Range} & Increased by$10log_{10}(N)$\\
\chline{Header}
\end{fancytable}
\coloredTablesOff
\begin{Figure}
\centering
\includegraphics[width=\linewidth]{gfx/seriesdiods}
\captionof{figure}{Multiple diods in series}
\label{fig:series_diods}
\end{Figure}
\end{multicols}
On each diode we have $V_{1diode}=\frac{V_{RF}}{N}$ volts, equally splitted.
The generated current is the same for each diode: \begin{equation}
I_{1 diode}=I_s\cdot\frac{V_{1d}^2}{4\cdot(nV_T)^2} \to I_{diodes}=\frac{V_{RF}^2}{N^2\cdot 4\cdot(nV_T)^2}= \frac{I_{1diode}}{N^2}
\end{equation}
The output voltage is therefore:
\begin{equation}
V_{out}=I_{diodes}\cdot R_{diode}\cdot N= \frac{R_0}{2n\cdot V_T}\cdot \frac{P_{RF}}{N}=Sensitivity\cdot \frac{P_{RF}}{N}
\end{equation}
The series of more than 10 diodes is unlikely, therefore usually resistors are used do reduce the input power.
\newsubsubtopic{Differential Diode sensors}
\begin{multicols}{2}
\coloredTablesOn
\begin{fancytable}{Key factors}
Improvement&Thermoelectric voltages resulting from the joining of
dissimilar metals, a serious problem below $-60 dBm$, are
cancelled.\\
Improvement&Measurement errors caused by even-order harmonics in
the input signal are suppressed due to the balanced
configuration.\\
\texttt{Sensitivity}& Multiplied per $2/N$, if more than one diode per part.\\
\texttt{Noise Power Level}& 1 or 2 dB lower\\
\texttt{Maximum Power} & Increased by $2\cdot N^2$ (to be verified) \\
\texttt{Dynamic Range} & - \\
\chline{Header}
\end{fancytable}
\coloredTablesOff
\begin{Figure}
\centering
\includegraphics[width=\linewidth]{gfx/differentialdiodes}
\captionof{figure}{Differential diodes schematic}
\label{fig:differential_diods}
\end{Figure}
\end{multicols}
Common-mode noise or interference riding on the ground plane is cancelled at the detector output. This is not RF noise but metallic connection noises on the meter side.
\newsubsubtopic{Alternative Diode sensors}
Circuit from an exam, comparative to a Series Diode sensor, with $N=2$
\begin{multicols}{2}
\coloredTablesOn
\begin{fancytable}{Key factors}
\texttt{Sensitivity}& Multiplied per $4$\\
\texttt{Noise Power Level}& Same as the series diodes\\
\texttt{Maximum Power} & Divided by $4$ \\
\texttt{Dynamic Range} & The same as series diodes, but it shifts.\\
\chline{Header}
\end{fancytable}
\coloredTablesOff
\begin{Figure}
\centering
\includegraphics[width=\linewidth]{gfx/diodesvariation}
\captionof{figure}{Almost differential}
\label{fig:alternative_diods}
\end{Figure}
\end{multicols}
The two diodes are both exposed to the RF voltage on R2. It is a sort of differential scheme, therefore the maximum power is 4 time lower than the series diode configuration, while the sensitivity is 4 times higher (a factor 2 is due to the addition of the two voltage across the diodes, another factor 2 is due to the sensitivity of the single diode, twice that of the series). The range is shifted.
\pagebreak
\newtopic{Impedance meters}
\newsubtopic{RF I-V Impedance meter}
\coloredTablesOn
\begin{splittedfancytable}{PROs}{CONs}
High accuracy (1\%
typ.) and wide impedance range at high frequencies&Operating frequency range is limited by transformer used in test head\\
\chline{Header}
\end{splittedfancytable}
\coloredTablesOff
\begin{multicols}{2}
\coloredTablesOn
\begin{fancytable}{Key factors}
\texttt{Frequency range}& 1MHz to 3GHz\\
\texttt{Oscillators}&One with indirect synthesis via PLL and the other directly generated from the first.\\
\texttt{Range of impedances}& Same precision on the whole range.\\
\chline{Header}
\end{fancytable}
\coloredTablesOff
The OSC is a tunable oscillator, usually implemented by \textit{indirect synthesis} with a PLL. It generates a signal that goes through the DUT.
The mixer is used to downconvert the signal to a value that works with the ADC, thanks to the Local Oscillator (LO): this one is directly obtained from OSC, realized using a mixer and a bandpass filter.
\linebreak
\begin{Figure}
\centering
\includegraphics[width=0.8\linewidth]{gfx/rfivmeter}
\captionof{figure}{RF I-V}
\label{fig:rfiv_meter}
\end{Figure}
\end{multicols}
\texttt{To be completed}
\pagebreak
\newtopic{Mixers}
A mixer is a circuit used for frequency conversion , needful for telecommunications, but also for radiofrequency measurements. The typical operations of a mixer are modulation, demodulation and frequency multiplication.
The basic concept that lies behind a mixer is the \textit{ prosthaphaeresis} (product of sum) formula:
\begin{equation}
\sin(2\cdot\pi\cdot f_1 \cdot t)\sin (2\cdot\pi\cdot f_2 \cdot t)={\frac {\cos(2\cdot\pi\cdot (f_1-f_2) \cdot t)-\cos(2\cdot\pi\cdot (f_1+f_2) \cdot t)}{2}}
\end{equation}
The result is the sum of two sinusoidal signals, one at the sum $f_1 + f_2$ and one at the difference $f_1 - f_2$ of the original frequencies.
To demonstrate mathematically how a nonlinear component can multiply signals and generate heterodyne frequencies, the nonlinear function F can be expanded in a power series (MacLaurin series): $F(v)=\alpha_{1}v+\alpha_{2}v^{2}+\alpha_{3}v^{3}+\cdots $
Applying the two sine waves at frequencies $\omega_1 = 2\pi f_1$ and $\omega_2 = 2\pi f_2$ to this device:
\begin{equation}
\begin{array}{l}
v_{\text{out}}=F(A_{1} sin(\omega_{1}t)+A_{2}sin(\omega_{2}t))=\alpha _{1}(A_{1}sin(\omega _{1}t)+A_{2}(sin \omega _{2}t))+\alpha _{2}(A_{1}sin(\omega _{1}t)+A_{2}sin (\omega _{2}t))^{2}+\cdots= \\
=\alpha _{1}(A_{1}sin( \omega _{1}t)+A_{2}sin (\omega _{2}t))+\alpha _{2}(A_{1}^{2}sin ^{2}(\omega _{1}t)+{\bf 2A_{1}A_{2}sin(\omega _{1}t)sin(\omega _{2}t)}+A_{2}^{2}sin ^{2}(\omega _{2}t))+\cdots
\end{array}
\end{equation}
\vspace{3mm}
\begin{multicols}{2}
\coloredTablesOn
\begin{fancytable}{Parameters}
\texttt{Conversion Loss} &Is the difference in dB between the received signal power entering the RF-port and the output IF power of the desired IF sideband exiting the IF-port.\\
\texttt{Isolation} & Interport isolation is the measure of insertion loss between any two mixer ports.\\
\texttt{Noise Figure}&is defined as the ratio between the input and output S/N ratio.\\
\texttt{$1dB$ Compression point}&the input RF power level at which conversion loss increases by $1dB$\\
\texttt{Dynamic Range}&Dynamic range is measured in dB and is the input RF power range over which the mixer is useful. The lower limit of dynamic range is the noise floor, which depends on the mixer and system. The upper limit of dynamic range is generally taken to be the mixer 1-dB compression point.\\
\texttt{Intercept Point}&Measured in $dBm$, input intercept point (IIP) is the level of input RF power at which the output power levels of the undesired intermodulation products and IF products would be equal.This output power level is the output intercept point (OIP), and equals the input intercept point minus conversion loss.\\
\texttt{Matching}&Typically indicated by the input VSWR, as a function of the frequency\\
\chline{Header}
\end{fancytable}
\coloredTablesOff
\begin{Figure}
\centering
\includegraphics[width=\linewidth]{gfx/freqconv}
\captionof{figure}{Frequency Conversion}
\label{fig:frequency_conversion}
\end{Figure}
\begin{Figure}
\centering
\includegraphics[width=0.9\linewidth]{gfx/balun}
\captionof{figure}{A BALUN, can be printed on a circuit board or using a wire-wound transformer.}
\label{fig:balun}