-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalign.py
executable file
·303 lines (236 loc) · 9.77 KB
/
align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python
""" Command-line usage:
python align.py [options] wave_file transcript_file output_file
where options may include:
-r sampling_rate -- override which sample rate model to use, one of 8000, 11025, and 16000
-s start_time -- start of portion of wavfile to align (in seconds, default 0)
-e end_time -- end of portion of wavfile to align (in seconds, defaul to end)
You can also import this file as a module and use the functions directly.
"""
import os
import sys
import getopt
import wave
import re
def prep_wav(orig_wav, out_wav, sr_override, wave_start, wave_end):
global sr_models
if os.path.exists(out_wav) and False :
f = wave.open(out_wav, 'r')
SR = f.getframerate()
f.close()
print "Already re-sampled the wav file to " + str(SR)
return SR
f = wave.open(orig_wav, 'r')
SR = f.getframerate()
f.close()
soxopts = ""
if float(wave_start) != 0.0 or wave_end != None :
soxopts += " trim " + wave_start
if wave_end != None :
soxopts += " " + str(float(wave_end)-float(wave_start))
if (sr_models != None and SR not in sr_models) or (sr_override != None and SR != sr_override) or soxopts != "":
new_sr = 11025
if sr_override != None :
new_sr = sr_override
print "Resampling wav file from " + str(SR) + " to " + str(new_sr) + soxopts + "..."
SR = new_sr
os.system("sox " + orig_wav + " -r " + str(SR) + " " + out_wav + " polyphase" + soxopts)
else:
#print "Using wav file, already at sampling rate " + str(SR) + "."
os.system("cp -f " + orig_wav + " " + out_wav)
return SR
def prep_mlf(trsfile, mlffile, word_dictionary, surround, between):
# Read in the dictionary to ensure all of the words
# we put in the MLF file are in the dictionary. Words
# that are not are skipped with a warning.
f = open(word_dictionary, 'r')
dict = { } # build hash table
for line in f.readlines():
if line != "\n" and line != "" :
dict[line.split()[0]] = True
f.close()
f = open(trsfile, 'r')
lines = f.readlines()
f.close()
words = []
if surround != None:
words += surround.split(',')
i = 0
# this pattern matches hyphenated words, such as TWENTY-TWO; however, it doesn't work with longer things like SOMETHING-OR-OTHER
hyphenPat = re.compile(r"([A-Z]+)-([A-Z]+)")
while (i < len(lines)):
txt = lines[i].replace('\n', '')
txt = txt.replace('{breath}', '{BR}').replace('<noise>', '{NS}')
txt = txt.replace('{laugh}', '{LG}').replace('{laughter}', '{LG}')
txt = txt.replace('{cough}', '{CG}').replace('{lipsmack}', '{LS}')
for pun in [',', '.', ':', ';', '!', '?', '"', '%', '(', ')', '--', '---']:
txt = txt.replace(pun, '')
txt = txt.upper()
# break up any hyphenated words into two separate words
txt = re.sub(hyphenPat, r'\1 \2', txt)
# change single quotes
txt = txt.split()
for wrd in txt:
if (wrd in dict):
words.append(wrd)
if between != None:
words.append(between)
else:
pass
print "SKIPPING WORD", wrd
i += 1
# remove the last 'between' token from the end
if between != None:
words.pop()
if surround != None:
words += surround.split(',')
writeInputMLF(mlffile, words)
def writeInputMLF(mlffile, words) :
fw = open(mlffile, 'w')
fw.write('#!MLF!#\n')
fw.write('"*/tmp.lab"\n')
for wrd in words:
fw.write(wrd + '\n')
fw.write('.\n')
fw.close()
def readAlignedMLF(mlffile, SR, wave_start):
# This reads a MLFalignment output file with phone and word
# alignments and returns a list of words, each word is a list containing
# the word label followed by the phones, each phone is a tuple
# (phone, start_time, end_time) with times in seconds.
f = open(mlffile, 'r')
lines = [l.rstrip() for l in f.readlines()]
f.close()
if len(lines) < 3 :
raise ValueError("Alignment did not complete succesfully.")
j = 2
ret = []
while (lines[j] != '.'):
if (len(lines[j].split()) == 5): # Is this the start of a word; do we have a word label?
# Make a new word list in ret and put the word label at the beginning
wrd = lines[j].split()[4]
ret.append([wrd])
# Append this phone to the latest word (sub-)list
ph = lines[j].split()[2]
if (SR == 11025):
st = (float(lines[j].split()[0])/10000000.0 + 0.0125)*(11000.0/11025.0)
en = (float(lines[j].split()[1])/10000000.0 + 0.0125)*(11000.0/11025.0)
else:
st = float(lines[j].split()[0])/10000000.0 + 0.0125
en = float(lines[j].split()[1])/10000000.0 + 0.0125
if st < en:
ret[-1].append([ph, st+wave_start, en+wave_start])
j += 1
return ret
def writeTextGrid(outfile, word_alignments) :
# make the list of just phone alignments
phons = []
for wrd in word_alignments :
phons.extend(wrd[1:]) # skip the word label
# make the list of just word alignments
# we're getting elements of the form:
# ["word label", ["phone1", start, end], ["phone2", start, end], ...]
wrds = []
for wrd in word_alignments :
# If no phones make up this word, then it was an optional word
# like a pause that wasn't actually realized.
if len(wrd) == 1 :
continue
wrds.append([wrd[0], wrd[1][1], wrd[-1][2]]) # word label, first phone start time, last phone end time
#write the phone interval tier
fw = open(outfile, 'w')
n_phones = len(phons)
fw.write(str(n_phones) + '\n')
for k in range(len(phons)):
fw.write(str(phons[k][1]) + '\n')
fw.write(str(phons[k][2]) + '\n')
fw.write(phons[k][0] + '\n')
for k in range(len(wrds) - 1):
fw.write(str(wrds[k][1]) + '\n')
fw.write(str(wrds[k+1][1]) + '\n')
fw.write(wrds[k][0] + '\n')
fw.write(str(wrds[-1][1]) + '\n')
fw.write(str(phons[-1][2]) + '\n')
fw.write(wrds[-1][0] + '\n')
fw.close()
def prep_working_directory():
os.system("rm -r -f ./tmp")
os.system("mkdir ./tmp")
def prep_scp(wavfile) :
fw = open('./tmp/codetr.scp', 'w')
fw.write(wavfile + ' ./tmp/tmp.plp\n')
fw.close()
fw = open('./tmp/test.scp', 'w')
fw.write('./tmp/tmp.plp\n')
fw.close()
def create_plp(hcopy_config) :
os.system('HCopy -T 1 -C ' + hcopy_config + ' -S ./tmp/codetr.scp')
def viterbi(input_mlf, word_dictionary, output_mlf, phoneset, hmmdir) :
os.system('HVite -T 1 -a -m -I ' + input_mlf + ' -H ' + hmmdir + '/macros -H ' + hmmdir + '/hmmdefs -S ./tmp/test.scp -i ' + output_mlf + ' -p 0.0 -s 5.0 ' + word_dictionary + ' ' + phoneset + ' > ./tmp/aligned.results')
def getopt2(name, opts, default = None) :
value = [v for n,v in opts if n==name]
if len(value) == 0 :
return default
return value[0]
if __name__ == '__main__':
try:
opts, args = getopt.getopt(sys.argv[1:], "r:s:e:", ["model="])
# get the three mandatory arguments
if len(args) != 3 :
raise ValueError("Specify wavefile, a transcript file, and an output file!")
wavfile, trsfile, outfile = args
sr_override = getopt2("-r", opts, None)
wave_start = getopt2("-s", opts, "0.0")
wave_end = getopt2("-e", opts, None)
surround_token = "sp" #getopt2("-p", opts, 'sp')
between_token = "sp" #getopt2("-b", opts, 'sp')
if surround_token.strip() == "":
surround_token = None
if between_token.strip() == "":
between_token = None
mypath = getopt2("--model", opts, None)
except :
print __doc__
(type, value, traceback) = sys.exc_info()
print value
sys.exit(0)
# If no model directory was said explicitly, get directory containing this script.
hmmsubdir = ""
sr_models = None
if mypath == None :
mypath = os.path.dirname(os.path.abspath(sys.argv[0])) + "/model"
hmmsubdir = "FROM-SR"
# sample rates for which there are acoustic models set up, otherwise
# the signal must be resampled to one of these rates.
sr_models = [8000, 11025, 16000]
if sr_override != None and sr_models != None and not sr_override in sr_models :
raise ValueError, "invalid sample rate: not an acoustic model available"
word_dictionary = "./tmp/dict"
input_mlf = './tmp/tmp.mlf'
output_mlf = './tmp/aligned.mlf'
# create working directory
prep_working_directory()
# create ./tmp/dict by concatening our dict with a local one
if os.path.exists("dict.local"):
os.system("cat " + mypath + "/dict dict.local > " + word_dictionary)
else:
os.system("cat " + mypath + "/dict > " + word_dictionary)
#prepare wavefile: do a resampling if necessary
tmpwav = "./tmp/sound.wav"
SR = prep_wav(wavfile, tmpwav, sr_override, wave_start, wave_end)
if hmmsubdir == "FROM-SR" :
hmmsubdir = "/" + str(SR)
#prepare mlfile
prep_mlf(trsfile, input_mlf, word_dictionary, surround_token, between_token)
#prepare scp files
prep_scp(tmpwav)
# generate the plp file using a given configuration file for HCopy
create_plp(mypath + hmmsubdir + '/config')
# run Verterbi decoding
#print "Running HVite..."
mpfile = mypath + '/monophones'
if not os.path.exists(mpfile) :
mpfile = mypath + '/hmmnames'
viterbi(input_mlf, word_dictionary, output_mlf, mpfile, mypath + hmmsubdir)
# output the alignment as a Praat TextGrid
writeTextGrid(outfile, readAlignedMLF(output_mlf, SR, float(wave_start)))