-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfasttext.py
131 lines (99 loc) · 4.35 KB
/
fasttext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import pickle
from typing import Dict
import fastText
import numpy as np
from tqdm import tqdm
from . import PrecomputedEmbeddings
from ..env import env
fasttext_dir = os.path.join(env.resources_dir, 'fastText')
fasttext_embeddings_name = 'wiki-news-300d-1M-subword'
class FastTextEmbeddings(PrecomputedEmbeddings):
def __new__(cls, *args, **kwargs):
if env.embeddings_cache:
return CachedFastTextEmbeddings()
return PreloadFastTextEmbeddings()
def __init__(self, *_, **__):
raise NotImplementedError('this should not happen')
@property
def size(self) -> int:
raise NotImplementedError
@property
def std(self):
raise NotImplementedError
def lookup(self, word: str) -> np.ndarray:
raise NotImplementedError
def is_unknown(self, word: str):
return NotImplementedError
@property
def precomputed_word2ind(self) -> Dict[str, int]:
raise NotImplementedError
@property
def precomputed_matrix(self) -> np.ndarray:
raise NotImplementedError
class FastTextEmbeddingsImpl(PrecomputedEmbeddings):
def __init__(self, size, *_, **__):
self._size = size
self._precomputed_word2ind = None
self._precomputed_matrix = None
@property
def precomputed_word2ind(self) -> Dict[str, int]:
if self._precomputed_word2ind is None:
vocab_filename = os.path.join(fasttext_dir, fasttext_embeddings_name + '.vec.vocab.pickle')
self._precomputed_word2ind = pickle.load(open(vocab_filename, 'rb'))
return self._precomputed_word2ind
@property
def precomputed_matrix(self) -> np.ndarray:
if self._precomputed_matrix is None:
matrix_filename = os.path.join(fasttext_dir, fasttext_embeddings_name + '.vec.matrix.npy')
self._precomputed_matrix = np.load(matrix_filename)
return self._precomputed_matrix
@staticmethod
def l2_normalize_if_needed(vec: np.ndarray, l2_normalize: bool) -> np.ndarray:
if l2_normalize:
vec /= np.linalg.norm(vec) # all-zero embeddings shouldn't exist
return vec
@property
def size(self) -> int:
return self._size
@property
def std(self) -> float:
return 0.05
def lookup(self, word: str) -> np.ndarray:
raise NotImplementedError
def is_unknown(self, word: str) -> bool:
return False
class PreloadFastTextEmbeddings(FastTextEmbeddingsImpl):
def __init__(self) -> None:
self.model = fastText.load_model(os.path.join(fasttext_dir, fasttext_embeddings_name + '.bin'))
super().__init__(self.model.get_dimension())
def lookup(self, word: str, l2_normalize: bool = True) -> np.ndarray:
vec = self.model.get_word_vector(word)
if np.count_nonzero(vec) == 0:
# add small amount of noise to all-zero embeddings to make them work with masking / CRF
vec += np.random.normal(0., scale=1e-6, size=len(vec))
return self.l2_normalize_if_needed(vec, l2_normalize)
def __str__(self) -> str:
return '<PreloadFastTextEmbeddings>'
class CachedFastTextEmbeddings(FastTextEmbeddingsImpl): # always L2 normalized!
def __init__(self, vocab=None):
cache_path = os.path.join(fasttext_dir, fasttext_embeddings_name + '.pickle')
if vocab is None:
self.word2ind, self.matrix = pickle.load(open(cache_path, 'rb'))
else:
vocab = set(vocab)
embeddings = PreloadFastTextEmbeddings()
self.word2ind = {word: i + 1 for i, word in enumerate(vocab)}
self.matrix = np.zeros((len(vocab) + 1, embeddings.size))
for i, word in tqdm(enumerate(vocab, start=1), desc='Looking up words', total=len(vocab)):
self.matrix[i] = embeddings.lookup(word, l2_normalize=True)
pickle.dump((self.word2ind, self.matrix), open(cache_path, 'wb'))
super().__init__(self.matrix.shape[1])
def lookup(self, word: str, include_precomputed: bool = True) -> np.ndarray:
index = self.word2ind.get(word)
if index is not None:
return self.matrix[index]
index = self.precomputed_word2ind.get(word)
if index is not None:
return self.precomputed_matrix[index]
raise RuntimeError(f'Cache/precomputed lookup failed for "{word}". Please rebuild the embedding cache.')