-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathimagenet.py
250 lines (206 loc) · 9.13 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import math
import matplotlib.pyplot as plt
from pathlib import Path
import torch
from torchvision import datasets, transforms, models
from tqdm.auto import tqdm
from mmd_critic import Dataset, select_prototypes, select_criticisms
cwd = Path('.')
output_dir = cwd / 'output'
imagenet_root = Path('~/ILSVRC2012/')
split='train'
device = torch.device('cpu')
class_name = 'Blenheim spaniel'
gamma = None
num_prototypes = 32
num_criticisms = 10
kernel_type = 'local'
# kernel_type = 'global'
# regularizer = None
regularizer = 'logdet'
# regularizer = 'iterative'
use_image_embeddings = False
batch_size = 64
make_plots = True
print('==============')
print(f'imagenet_root:{imagenet_root.absolute()}')
print(f'output_dir:{output_dir.absolute()}')
print(f'target_class:{class_name}')
print(f'num_prototypes:{num_prototypes}')
print(f'num_criticisms:{num_criticisms}')
print(f'gamma:{gamma}')
print(f'kernel_type:{kernel_type}')
print(f'regularizer:{regularizer}')
print(f'make_plots:{make_plots}')
print('==============\n')
# torch.set_num_threads(64)
imagenet_stats = {"mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225]}
if use_image_embeddings:
# ====== Run using image embeddings, as in Section 5.2 of the paper
print('Preparing data...', end='', flush=True)
imagenet_tfms = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=imagenet_stats["mean"], std=imagenet_stats["std"]),
]
)
class NormalizeInverse(transforms.Normalize):
def __init__(self, mean, std) -> None:
mean = torch.as_tensor(mean)
std = torch.as_tensor(std)
std_inv = 1 / (std + 1e-7)
mean_inv = -mean * std_inv
super().__init__(mean=mean_inv, std=std_inv)
def __call__(self, t: torch.Tensor) -> torch.Tensor:
return super().__call__(t.clone()).clamp(min=0.0, max=1.0)
imagenet_inverse_normalize = NormalizeInverse(mean=imagenet_stats['mean'], std=imagenet_stats['std'])
ds = datasets.ImageNet(root=imagenet_root, split='train', transform=imagenet_tfms)
class_idx = ds.class_to_idx[class_name]
ds = torch.utils.data.Subset(ds, torch.where(torch.tensor(ds.targets) == class_idx)[0])
dl = torch.utils.data.DataLoader(ds, batch_size=batch_size)
model = models.resnet50(pretrained=True)
class Identity(torch.nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
model.fc = Identity()
embeddings = []
for x, y in tqdm(dl, 'Generating embeddings'):
embeddings_batch = model(x).detach().cpu()
embeddings += [embeddings_batch]
embeddings = torch.cat(embeddings)
X = embeddings
y = torch.zeros((X.shape[0],), dtype=torch.long)
d = Dataset(X, y)
if kernel_type == 'global':
d.compute_rbf_kernel(gamma)
elif kernel_type == 'local':
d.compute_local_rbf_kernel(gamma)
else:
raise KeyError('kernel_type must be either "global" or "local"')
print('Done.', flush=True)
class_name = class_name.replace(' ', '_')
# Prototypes
if num_prototypes > 0:
print('Computing prototypes...', end='', flush=True)
prototype_indices = select_prototypes(d.K, num_prototypes)
prototypes = torch.stack([ds[i][0] for i in prototype_indices])
print('Done.', flush=True)
print(prototype_indices.sort()[0].tolist())
# Visualize
if make_plots:
print('Plotting prototypes...', end='', flush=True)
num_cols = 8
num_rows = math.ceil(num_prototypes / num_cols)
fig, axes = plt.subplots(num_rows, num_cols, figsize=(6, num_rows * 0.75))
for i, axis in enumerate(axes.ravel()):
if i >= num_prototypes:
axis.axis('off')
continue
axis.imshow(imagenet_inverse_normalize(prototypes[i]).permute(1,2,0).numpy())
axis.axis('off')
fig.suptitle(f'{num_prototypes} Prototypes')
plt.savefig(output_dir / f'{num_prototypes}_prototypes_imagenet_embeddings_{class_name}.svg')
print('Done.', flush=True)
# Criticisms
if num_criticisms > 0:
print('Computing criticisms...', end='', flush=True)
criticism_indices = select_criticisms(d.K, prototype_indices, num_criticisms, regularizer)
criticisms = torch.stack([ds[i][0] for i in criticism_indices])
print('Done.', flush=True)
print(criticism_indices.sort()[0].tolist())
# Visualize
if make_plots:
print('Plotting criticisms...', end='', flush=True)
num_cols = 8
num_rows = math.ceil(num_criticisms / num_cols)
fig, axes = plt.subplots(num_rows, num_cols, figsize=(6, num_rows * 0.75))
for i, axis in enumerate(axes.ravel()):
if i >= num_criticisms:
axis.axis('off')
continue
axis.imshow(imagenet_inverse_normalize(criticisms[i]).permute(1,2,0).numpy())
axis.axis('off')
fig.suptitle(f'{num_criticisms} Criticisms')
plt.savefig(output_dir / f'{num_criticisms}_criticisms_imagenet_embeddings_{class_name}.svg')
print('Done.', flush=True)
else:
# ====== Run using raw image data, i.e. input images are represented as flattened vector
print('Preparing data...', end='', flush=True)
imagenet_tfms_no_normalize = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
]
)
ds = datasets.ImageNet(root=imagenet_root, split='train', transform=imagenet_tfms_no_normalize)
class_idx = ds.class_to_idx[class_name]
ds = torch.utils.data.Subset(ds, torch.where(torch.tensor(ds.targets) == class_idx)[0])
samples = [sample[0] for sample in ds]
X = torch.stack(samples).reshape(len(samples), -1)
y = torch.zeros((X.shape[0],), dtype=torch.long)
d = Dataset(X, y)
if kernel_type == 'global':
d.compute_rbf_kernel(gamma)
elif kernel_type == 'local':
d.compute_local_rbf_kernel(gamma)
else:
raise KeyError('kernel_type must be either "global" or "local"')
print('Done.', flush=True)
class_name = class_name.replace(' ', '_')
# Prototypes
if num_prototypes > 0:
print('Computing prototypes...', end='', flush=True)
prototype_indices = select_prototypes(d.K, num_prototypes)
prototypes = d.X[prototype_indices]
prototype_labels = d.y[prototype_indices]
sorted_by_y_indices = prototype_labels.argsort()
prototypes_sorted = prototypes[sorted_by_y_indices]
prototype_labels = prototype_labels[sorted_by_y_indices]
print('Done.', flush=True)
print(prototype_indices.sort()[0].tolist())
# Visualize
if make_plots:
print('Plotting prototypes...', end='', flush=True)
num_cols = 8
num_rows = math.ceil(num_prototypes / num_cols)
fig, axes = plt.subplots(num_rows, num_cols, figsize=(6, num_rows * 0.75))
for i, axis in enumerate(axes.ravel()):
if i >= num_prototypes:
axis.axis('off')
continue
axis.imshow(prototypes_sorted[i].view(3,224,224).permute(1,2,0).numpy())
axis.axis('off')
fig.suptitle(f'{num_prototypes} Prototypes')
plt.savefig(output_dir / f'{num_prototypes}_prototypes_imagenet_{class_name}.svg')
print('Done.', flush=True)
# Criticisms
if num_criticisms > 0:
print('Computing criticisms...', end='', flush=True)
criticism_indices = select_criticisms(d.K, prototype_indices, num_criticisms, regularizer)
criticisms = d.X[criticism_indices]
criticism_labels = d.y[criticism_indices]
sorted_by_y_indices = criticism_labels.argsort()
criticisms_sorted = criticisms[sorted_by_y_indices]
criticism_labels = criticism_labels[sorted_by_y_indices]
print('Done.', flush=True)
print(criticism_indices.sort()[0].tolist())
# Visualize
if make_plots:
print('Plotting criticisms...', end='', flush=True)
num_cols = 8
num_rows = math.ceil(num_criticisms / num_cols)
fig, axes = plt.subplots(num_rows, num_cols, figsize=(6, num_rows * 0.75))
for i, axis in enumerate(axes.ravel()):
if i >= num_criticisms:
axis.axis('off')
continue
axis.imshow(criticisms_sorted[i].view(3,224,224).permute(1,2,0).numpy())
axis.axis('off')
fig.suptitle(f'{num_criticisms} Criticisms')
plt.savefig(output_dir / f'{num_criticisms}_criticisms_imagenet_{class_name}.svg')
print('Done.', flush=True)