-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathvisualize.py
265 lines (213 loc) · 9.27 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
from __future__ import division
import subprocess as sp
import os
import io
import sys
import re
from copy import deepcopy
import psycopg2
import psycopg2.extras
import subprocess
from operator import itemgetter
from collections import OrderedDict, Counter
import cv2
from fractions import Fraction
import csv
import errno
import time
import shutil
import numpy as np
import datetime
# headless version
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
# this requires DISPLAY
# import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import PIL
from pprint import pprint
import multiprocessing
import string
import copy
import json
import random
import params
import math
import local_common as cm
def rad2deg(rad):
return 180.0 * rad / math.pi
def get_human_steering(epoch_id):
epoch_dir = params.data_dir
assert os.path.isdir(epoch_dir)
steering_path = cm.jn(epoch_dir, 'out-key-{}.csv'.format(epoch_id))
# steering_path = cm.jn(epoch_dir, 'epoch{:0>2}_steering.csv'.format(epoch_id))
assert os.path.isfile(steering_path)
rows = cm.fetch_csv_data(steering_path)
human_steering = [rad2deg(row['wheel']) for row in rows]
return human_steering
def get_degree_picar_mini(deg):
# picar-mini-v2.0's actual control is shown.
if deg < 15 and deg > -15:
deg = 0 # center
elif deg >= 15:
deg = 30 # right
elif deg <= -15:
deg = -30 # left
return deg
def visualize(epoch_id, machine_steering, out_dir, perform_smoothing=False,
verbose=False, verbose_progress_step = 100, frame_count_limit = None):
epoch_dir = params.data_dir
human_steering = get_human_steering(epoch_id)
print ("epoch_id=%d, h_len=%d, m_len=%d" %
(epoch_id, len(human_steering), len(machine_steering)))
assert len(human_steering) == len(machine_steering)
# testing: artificially magnify steering to test steering wheel visualization
# human_steering = list(np.array(human_steering) * 10)
# machine_steering = list(np.array(machine_steering) * 10)
# testing: artificially alter machine steering to test that the disagreement coloring is working
# delta = 0
# for i in xrange(len(machine_steering)):
# delta += random.uniform(-1, 1)
# machine_steering[i] += delta
if perform_smoothing:
machine_steering = list(cm.smooth(np.array(machine_steering)))
#human_steering = list(cm.smooth(np.array(human_steering)))
steering_min = min(np.min(human_steering), np.min(machine_steering))
steering_max = max(np.max(human_steering), np.max(machine_steering))
assert os.path.isdir(epoch_dir)
# front_vid_path = cm.jn(epoch_dir, 'epoch{:0>2}_front.mkv'.format(epoch_id))
front_vid_path = cm.jn(epoch_dir, 'out-video-{}-scaled.avi'.format(epoch_id))
assert os.path.isfile(front_vid_path)
dash_vid_path = cm.jn(epoch_dir, 'epoch{:0>2}_dash.mkv'.format(epoch_id))
dash_exists = os.path.isfile(dash_vid_path)
front_cap = cv2.VideoCapture(front_vid_path)
dash_cap = cv2.VideoCapture(dash_vid_path) if dash_exists else None
assert os.path.isdir(out_dir)
vid_size = cm.video_resolution_to_size('720p', width_first=True)
# out_path = cm.jn(out_dir, 'epoch{:0>2}_human_machine.mkv'.format(epoch_id))
out_path = cm.jn(out_dir, 'out-video-{}-human_machine.mkv'.format(epoch_id))
vw = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*'X264' ), 30, vid_size)
w, h = vid_size
for f_cur in xrange(len(machine_steering)):
if (f_cur != 0) and (f_cur % verbose_progress_step == 0):
print 'completed {} of {} frames'.format(f_cur, len(machine_steering))
if (frame_count_limit is not None) and (f_cur >= frame_count_limit):
break
rret, rimg = front_cap.read()
assert rret
if dash_exists:
dret, dimg = dash_cap.read()
assert dret
else:
dimg = rimg.copy()
dimg[:] = (0, 0, 0)
ry0, rh = 80, 500
dimg = dimg[100:, :930]
dimg = cm.cv2_resize_by_height(dimg, h-rh)
fimg = rimg.copy()
fimg[:] = (0, 0, 0)
fimg[:rh] = rimg[ry0:ry0+rh]
dh, dw = dimg.shape[:2]
fimg[rh:,:dw] = dimg[:]
########################## plot ##########################
plot_size = (500, dh)
win_before, win_after = 150, 150
xx, hh, mm= [], [], []
pp = []
for f_rel in xrange(-win_before, win_after+1):
f_abs = f_cur + f_rel
if f_abs < 0 or f_abs >= len(machine_steering):
continue
xx.append(f_rel/30)
hh.append(human_steering[f_abs])
mm.append(machine_steering[f_abs])
if params.use_picar_mini == True:
pp.append(get_degree_picar_mini(machine_steering[f_abs]))
fig = plt.figure()
axis = fig.add_subplot(1, 1, 1)
steering_range = max(abs(steering_min), abs(steering_max))
#ylim = [steering_min, steering_max]
ylim = [-steering_range, steering_range]
# ylim[0] = min(np.min(hh), np.min(mm))
# ylim[1] = max(np.max(hh), np.max(mm))
axis.set_xlabel('Current Time (secs)')
axis.set_ylabel('Steering Angle')
axis.axvline(x=0, color='k', ls='dashed')
axis.plot(xx, hh)
axis.plot(xx, mm)
if params.use_picar_mini == True:
axis.plot(xx, pp) # picar-mini-v2.0
axis.set_xlim([-win_before/30, win_after/30])
axis.set_ylim(ylim)
#axis.set_ylabel(y_label, fontsize=18)
axis.label_outer()
#axes.append(axis)
buf = io.BytesIO()
# http://stackoverflow.com/a/4306340/627517
sx, sy = plot_size
sx, sy = round(sx / 100, 1), round(sy / 100, 1)
fig.set_size_inches(sx, sy)
fig.tight_layout()
fig.savefig(buf, format="png", dpi=100)
buf.seek(0)
buf_img = PIL.Image.open(buf)
pimg = np.asarray(buf_img)
plt.close(fig)
pimg = cv2.resize(pimg, plot_size)
pimg = pimg[:,:,:3]
ph, pw = pimg.shape[:2]
pimg = 255 - pimg
fimg[rh:,-pw:] = pimg[:]
####################### human steering wheels ######################
wimg = cm.imread(os.path.abspath("images/wheel-tesla-image-150.png"), cv2.IMREAD_UNCHANGED)
human_wimg = cm.rotate_image(wimg, -human_steering[f_cur])
wh, ww = human_wimg.shape[:2]
fimg = cm.overlay_image(fimg, human_wimg, y_offset = rh+50, x_offset = dw+60)
####################### machine steering wheels ######################
disagreement = abs(machine_steering[f_cur] - human_steering[f_cur])
machine_wimg = cm.rotate_image(wimg, -machine_steering[f_cur])
red_machine_wimg = machine_wimg.copy()
green_machine_wimg = machine_wimg.copy()
red_machine_wimg[:,:,2] = 255
green_machine_wimg[:,:,1] = 255
#r = disagreement / (steering_max - steering_min)
max_disagreement = 10
r = min(1., disagreement / max_disagreement)
g = 1 - r
assert r >= 0
assert g <= 1
machine_wimg = cv2.addWeighted(red_machine_wimg, r, green_machine_wimg, g, 0)
wh, ww = machine_wimg.shape[:2]
fimg = cm.overlay_image(fimg, machine_wimg, y_offset = rh+50, x_offset = dw+260)
####################### text ######################
timg_green_agree = cm.imread(os.path.abspath("images/text-green-agree.png"), cv2.IMREAD_UNCHANGED)
timg_ground_truth = cm.imread(os.path.abspath("images/text-ground-truth.png"), cv2.IMREAD_UNCHANGED)
timg_learned_control = cm.imread(os.path.abspath("images/text-learned-control.png"), cv2.IMREAD_UNCHANGED)
timg_red_disagree = cm.imread(os.path.abspath("images/text-red-disagree.png"), cv2.IMREAD_UNCHANGED)
timg_tesla_control_autopilot = cm.imread(os.path.abspath("images/text-tesla-control-autopilot.png"), cv2.IMREAD_UNCHANGED)
timg_tesla_control_human = cm.imread(os.path.abspath("images/text-tesla-control-human.png"), cv2.IMREAD_UNCHANGED)
# timg_ = cm.imread(os.path.abspath("images/text-.png"), cv2.IMREAD_UNCHANGED)
fimg = cm.overlay_image(fimg, timg_tesla_control_autopilot, y_offset = rh+8, x_offset = dw+83)
fimg = cm.overlay_image(fimg, timg_learned_control, y_offset = rh+8, x_offset = dw+256)
fimg = cm.overlay_image(fimg, timg_ground_truth, y_offset = rh+205, x_offset = dw+90)
fimg = cm.overlay_image(fimg, timg_red_disagree, y_offset = rh+205, x_offset = dw+230)
fimg = cm.overlay_image(fimg, timg_green_agree, y_offset = rh+205, x_offset = dw+345)
if (frame_count_limit is not None) and (frame_count_limit == 1):
cv2.imwrite(out_path.replace('mkv', 'jpg'), fimg)
sys.exit()
vw.write(fimg)
front_cap.release()
if dash_exists:
dash_cap.release()
vw.release()
cm.mkv_to_mp4(out_path, remove_mkv=True)
if __name__ == '__main__':
epoch_id = 1
machine_steering = get_human_steering(epoch_id)
# frame_count_limit = None
# frame_count_limit = 30 * 5
# frame_count_limit = 1
visualize(epoch_id, machine_steering, params.out_dir,
verbose=True, frame_count_limit=150)