-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsetup.py
47 lines (45 loc) · 1.78 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from setuptools import setup
import re
__version__ = re.findall(
r"""__version__ = ["']+([0-9\.]*)["']+""",
open("geograd/__init__.py").read(),
)[0]
setup(
name="geograd",
version=__version__,
description="Geograd is a package for efficiency computing triangulated surface constraints in parallel",
long_description="""Documentation page TBA
Citation
--------
Please cite geograd in any publication for which you find it useful.
For more background, theory, and figures, see the [geograd journal article](https://arc.aiaa.org/doi/10.2514/1.J058366).
B. J. Brelje, Anibal, J. L, Yildirim, A., Mader, C. A., and Martins, J. R. R. A., “Flexible Formulation of Spatial Integration Constraints in Aerodynamic Shape Optimization”, in AIAA Journal, 2020.
@article{Brelje2020a,
author = {Benjamin J. Brelje and Joshua Anibal and Anil Yildirim and Charles A. Mader and Joaquim R. R. A. Martins},
doi = {10.2514/1.J058366},
journal = {AIAA Journal},
month = {June},
number = {6},
pages = {2571--2580},
title = {Flexible Formulation of Spatial Integration Constraints in Aerodynamic Shape Optimization},
volume = {58},
year = {2020}
}
""",
long_description_content_type="text/markdown",
keywords="geometric constraints optimization",
author="",
author_email="",
url="https://github.com/mdolab/geograd",
license="None",
packages=[
"geograd",
],
package_data={"geograd": ["*.so"]},
install_requires=["numpy>=1.16"],
extras_require={
"testing": ["numpy>=1.16", "numpy-stl", "openmdao>=2.1", "mpi4py>=3.0"],
"docs": ["sphinx-mdolab-theme"],
},
classifiers=["Operating System :: Linux", "Programming Language :: Python, Fortran"],
)