-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_file.py
108 lines (91 loc) · 4.44 KB
/
data_file.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
""" REVISION 19-02-2015 - jps79
This is a wrapper script for an h5py data file.
Author: (c) James Sharkey, 2015
It was used for the paper in Review of Scientific Instruments titled:
A one-piece 3D printed flexure translation stage for open-source microscopy
This script is released under the GNU General Public License v3.0
"""
import h5py
import datetime
import numpy as np
class Datafile():
_DEFAULT_FILE = "microscope_datafile"
def __init__(self, filename=None):
"""A class to manage a hdf5 datafile.
- If filename is specified, it should be a string ending in .hdf5,
otherwise a filename is automatically generated.
- (If no filename is explicitly specified, do not assume that just
because a Datafile object exists, a corresponding file exists on disk.
It may not exist until a group is created and data added.
[This may hide read/write privilige errors until late in execution.])"""
today = datetime.date.today()
self._date = today.strftime('%Y%m%d')
if filename is None: # If not explicitly asked for a datafile:
self._filename = self._DEFAULT_FILE + "_" + self._date + ".hdf5"
self._datafile = None # Don't make one just yet
else:
self._datafile = h5py.File(filename, 'a')
def _close(self):
"""Close the file object and clean up. Called on deletion, do not call explicitly."""
if self._datafile is not None:
self._datafile.flush()
self._datafile.close()
def close(self):
self._close()
def __del__(self):
try:
self._close()
except:
pass
def new_group(self, group, description=None, parent=None):
"""Create a new group with 'groupxxx' as the name, and returns it.
- description allows an attribute to be added.
- A timestamp is automatically added.
- Use add_data(...) to create a dataset; since this manages attributes
correctly.
- (May overflow after 999 groups of same name.)"""
if parent is None:
if self._datafile is None: # If weren't asked for datafile, but do need one:
self._datafile = h5py.File(self._filename, 'a') # Make one using the filename generated
parent = self._datafile
keys = parent.keys()
n = 0
while group + "%03d" % n in keys:
n += 1
grouppath = group + "%03d" % n
g = parent.create_group(grouppath)
g.attrs.create("timestamp", str(datetime.datetime.now().isoformat())) # Add timestamp attribute
if description is not None:
g.attrs.create("Description", description)
return g
# =============================================================================
# def new_dataset(self, dataset, datasize, group_object, description=None):
# keys = group_object.keys()
# n = 0
# while dataset + "%03d" % n in keys:
# n += 1
# dataset = dataset + "%03d" % n
# dset = group_object.create_dataset(dataset, shape=datasize, dtype='f')
# dset.attrs.create("timestamp", datetime.datetime.now().isoformat()) # Add a timestamp attribute
# if description is not None:
# dset.attrs.create("Description", description)
# return dset
# =============================================================================
def add_data(self, indata, group_object, dataset, description=None):
"""Given a datafile group object, create a dataset inside it from an array.
- indata should be a array-like object containing the dataset.
- The group object to which the dataset is to be added should be passed.
- The dataset will be named according to the dataset argument, with a number
appended, and will have an attribute called Description added if specified.
- (May overflow after 99999 datasets of same name.)"""
indata = np.array(indata)
keys = group_object.keys()
n = 0
while dataset + "%05d" % n in keys:
n += 1
dataset = dataset + "%05d" % n
dset = group_object.create_dataset(dataset, data=indata)
dset.attrs.create("timestamp", datetime.datetime.now().isoformat()) # Add a timestamp attribute
if description is not None:
dset.attrs.create("Description", description)
self._datafile.flush()