Skip to content

Latest commit

 

History

History
32 lines (26 loc) · 1.24 KB

File metadata and controls

32 lines (26 loc) · 1.24 KB
description
#ephemeral_resources #scheduling_flexibility #scheduling_requirements #Kubernetes #Ray

ESCHER: Expressive scheduling with ephemeral resources

Meta Info

Presented in SoCC 2022.

Authors: Romil Bhardwaj (UC Berkeley), Alexey Tumanov (Georgia Tech), Stephanie Wang (UC Berkeley), Richard Liaw, Philipp Moritz, Robert Nishihara (Anyscale), Ion Stoica (UC Berkeley).

Understanding the paper

  • Goal: support custom scheduling constraints
  • Evolvability
    • Monolithic schedulers (Kubernetes, YARN)
      • Applications state resource requirements
      • Scheduler provides a fixed set of supported policies (e.g., affinity)
      • Simple, but hard to evolve
    • Two-level schedulers (Mesos, Omega)
      • Applications implement end-to-end scheduling
      • Highly evolvable, but complex (application must implement a custom scheduler)
  • ESCHER
    • Two key abstractions
      • Resource matching scheduler
      • Applications create ephemeral resources and get cluster state at runtime through an API
    • Application -> ESCHER Scheduling Library (ESL) -> Framework Scheduler
    • Add latency (because of RPC call), reduce the implementation burden
    • Implemented in Ray and Kubernetes