forked from drilistbox/FlashOCC_on_UniOcc_and_RenderOCC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrenderocc-7frame-256x704.py
91 lines (83 loc) · 2.66 KB
/
renderocc-7frame-256x704.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
_base_ = ['./bevstereo-occ-256x704.py']
model = dict(
type='RenderOcc',
final_softplus=True,
use_3d_loss=True,
nerf_head=dict(
type='NerfHead',
point_cloud_range=[-40, -40, -1, 40, 40, 5.4],
voxel_size=0.4,
scene_center=[0, 0, 2.2],
radius=39,
use_depth_sup=True,
weight_depth=0.1,
weight_semantic=0.1,
),
)
optimizer = dict(type='AdamW', lr=1e-4, weight_decay=1e-2)
depth_gt_path = 'data/nuscenes/depth_gt'
semantic_gt_path = 'data/nuscenes/seg_gt_lidarseg'
data = dict(
samples_per_gpu=4, # with 8 GPU, Batch Size=16
workers_per_gpu=4,
train=dict(
use_rays=True,
depth_gt_path=depth_gt_path,
semantic_gt_path=semantic_gt_path,
aux_frames=[-3,-2,-1,1,2,3],
max_ray_nums=38400,
)
)
resume_from = "work_dirs/renderocc-7frame-256x704/epoch_17.pth"
runner = dict(type='EpochBasedRunner', max_epochs=24)
log_config = dict(
interval=50,
)
# 12 epoch
# ===> per class IoU of 6019 samples:
# ===> others - IoU = 10.1
# ===> barrier - IoU = 45.64
# ===> bicycle - IoU = 23.65
# ===> bus - IoU = 39.06
# ===> car - IoU = 49.05
# ===> construction_vehicle - IoU = 24.1
# ===> motorcycle - IoU = 21.25
# ===> pedestrian - IoU = 22.0
# ===> traffic_cone - IoU = 24.49
# ===> trailer - IoU = 31.75
# ===> truck - IoU = 35.9
# ===> driveable_surface - IoU = 81.03
# ===> other_flat - IoU = 39.8
# ===> sidewalk - IoU = 51.52
# ===> terrain - IoU = 55.3
# ===> manmade - IoU = 44.77
# ===> vegetation - IoU = 39.38
# ===> mIoU of 6019 samples: 37.57
# {'mIoU': array([0.10099931, 0.45636267, 0.23653947, 0.39057868, 0.49050112,
# 0.24099109, 0.21246329, 0.21996862, 0.24486159, 0.31752073,
# 0.35899616, 0.81029256, 0.39799262, 0.51517185, 0.55297571,
# 0.44765667, 0.39375391, 0.9051707 ])}
# 24 epoch
# ===> per class IoU of 6019 samples:
# ===> others - IoU = 11.23
# ===> barrier - IoU = 46.09
# ===> bicycle - IoU = 23.56
# ===> bus - IoU = 41.36
# ===> car - IoU = 49.75
# ===> construction_vehicle - IoU = 25.75
# ===> motorcycle - IoU = 21.93
# ===> pedestrian - IoU = 23.23
# ===> traffic_cone - IoU = 25.25
# ===> trailer - IoU = 32.51
# ===> truck - IoU = 37.06
# ===> driveable_surface - IoU = 81.35
# ===> other_flat - IoU = 40.83
# ===> sidewalk - IoU = 52.19
# ===> terrain - IoU = 55.81
# ===> manmade - IoU = 45.66
# ===> vegetation - IoU = 40.19
# ===> mIoU of 6019 samples: 38.46
# {'mIoU': array([0.11233032, 0.46090279, 0.23563457, 0.41356269, 0.4974597 ,
# 0.25749657, 0.21930147, 0.23229435, 0.25249696, 0.32510802,
# 0.37057679, 0.81354295, 0.40832349, 0.52194215, 0.55814934,
# 0.45661405, 0.40187722, 0.90352228])}