-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_track.py
128 lines (108 loc) · 3.56 KB
/
face_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python
import cv2
from djitellopy import tello
from surveyor import process_frame
import time
def find_face(frame):
face_cascade = cv2.CascadeClassifier(
cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(frame_gray, 1.2, 8)
faces_centres = []
faces_areas = []
for (x, y, width, height) in faces:
# rectangle
cv2.rectangle(frame, (x, y), (x+width, y+height), (0, 0, 255), 2)
centre_x = x + width // 2 # // operator division(floor) e.g. 9//2=4
centre_y = y + height // 2
area = width * height
faces_centres.append((centre_x, centre_y))
faces_areas.append(area)
print(len(faces_areas))
if len(faces_areas) != 0:
i = faces_areas.index(max(faces_areas))
# centre of largest
cv2.circle(frame, (centre_x, centre_y), 5, (0, 255, 0), cv2.FILLED)
return frame, [faces_centres[i], faces_areas[i]]
else:
return frame, [[0, 0], 0]
def track_face(drone, face_data, frame_size):
# (L/R, bk/fwd, up/down, clock/counterclock-wise yaw) each in -/+100%
left_right = 0
bk_fwd = 0
down_up = 0
c_cc_yaw = 0
speed = 25
height, width = frame_size
face_x, face_y = face_data[0]
# face_area = face_data[1]
# print(f"(w,h):{frame_size}, (face_x,face_y):{face_data[0]}")
# up-down
if face_y > 3*height//5:
print(f"Face in y:{face_y} > {3*height//5}")
print("move down v")
down_up = -speed
elif face_y != 0 and face_y < 2*height//5:
print(f"Face in y:{face_y} < {2*height//5}")
print("move up ^")
down_up = speed
else:
print("stay put")
# left-right
if face_x > 3*width//5:
print(f"Face in x:{face_x} > {3*width//5}")
print("rotate clockwise >")
c_cc_yaw = speed
elif face_x != 0 and face_x < 2*width//5:
print(f"Face in x:{face_x} < {2*width//5}")
print("rotate counterclockwise <")
c_cc_yaw = -speed
else:
print("stay put")
return [left_right, bk_fwd, down_up, c_cc_yaw]
if __name__ == "__main__":
source = "TELLO"
# initializations
if source == "TELLO":
# tello drone
drone = tello.Tello()
drone.connect()
# start streaming
drone.streamon()
frame = drone.get_frame_read().frame
frame = process_frame(frame, drone)
cv2.imshow("Live Image", frame)
time.sleep(5)
drone.takeoff()
drone.send_rc_control(0, 0, 25, 0)
time.sleep(4)
drone.send_rc_control(0, 0, 0, 0)
elif source == "WEBCAM":
# start streaming from webcam
video_stream = cv2.VideoCapture(0)
# main loop
while True:
if source == "TELLO":
# get frame from drone
frame = drone.get_frame_read().frame
frame = process_frame(frame, drone)
elif source == "WEBCAM":
# get frame from webcam
_, frame = video_stream.read()
else:
break
frame, face_data = find_face(frame)
commands = track_face(0, face_data, frame.shape[:2])
if source == "TELLO":
drone.send_rc_control(
commands[0],
commands[1],
commands[2],
commands[3])
cv2.imshow("Live Image", frame)
if cv2.waitKey(1) & 0xFF == ord("q"):
drone.land
break
drone.streamoff()
drone.end()
cv2.destroyAllWindows()