-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonlinear.py
82 lines (62 loc) · 2.27 KB
/
nonlinear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
def f1(x1, x2):
return x1**2 - 10*x1 + x2**2 + 8
def f2(x1, x2):
return x1 * x2**2 + x1 - 10 * x2 + 8
def g1(x1, x2):
return (x1**2 + x2**2 + 8) / 10
def g2(x1, x2):
return (x1 * x2**2 + x1 + 8) / 10
def f3(x1, x2):
return 4 * x1**2 - 20 * x1 + 0.25 * x2**2 + 8
def pf3px1(x1, x2):
return 8 * x1 - 20
def pf3px2(x1, x2):
return 0.5 * x2
def f4(x1, x2):
return 0.5 * x1 * x2**2 + 2 * x1 - 5 * x2 + 8
def pf4px1(x1, x2):
return 0.5 * x2 **2 + 2
def pf4px2(x1, x2):
return x1 * x2 - 5
def fixed_point(g1, g2, initial_guess, tolerance):
v1 = g1(initial_guess[0], initial_guess[1])
v2 = g2(initial_guess[0], initial_guess[1])
prev_v1, prev_v2 = initial_guess[0], initial_guess[1]
while True:
if(abs(v1 - prev_v1) < tolerance):
return [v1, v2]
prev_v1, prev_v2 = v1, v2
v1, v2 = g1(prev_v1, prev_v2), g2(prev_v1, prev_v2)
def gauss_seidel(g1, g2, initial_guess, tolerance):
v1 = g1(initial_guess[0], initial_guess[1])
v2 = g2(initial_guess[0], initial_guess[1])
prev_v1, prev_v2 = initial_guess[0], initial_guess[1]
while True:
if(abs(v1 - prev_v1) < tolerance):
return [v1, v2]
prev_v1, prev_v2 = v1, v2
v1 = g1(prev_v1, prev_v2)
v2 = g2(v1, prev_v2)
def J(pf1px1, pf2px1, pf1px2, pf2px2, x1, x2):
return np.array([[pf1px1(x1, x2), pf1px2(x1, x2)], [pf2px1(x1, x2), pf2px2(x1, x2)]])
def newton(pf1px1, pf2px1, pf1px2, pf2px2, f1, f2, x1, x2, steps):
for i in range(steps):
y = np.matmul(np.linalg.inv(J(pf1px1, pf2px1, pf1px2, pf2px2, x1, x2)), np.array([-f1(x1, x2), -f2(x1, x2)]))
x1 += y[0]
x2 += y[1]
print("Iteration {} : X1 = {}, X2 = {}".format(i + 1, x1, x2))
return [x1, x2]
def test_fixed_point():
initial_guess = [0, 0]
x1, x2 = fixed_point(g1, g2, initial_guess, 1e-3)
print("X1 = {}, X2 = {}".format(x1, x2))
def test_gauss_seidel():
initial_guess = [0, 0]
x1, x2 = gauss_seidel(g1, g2, initial_guess, 1e-3)
print("X1 = {}, X2 = {}".format(x1, x2))
def test_newton():
x1, x2 = newton(pf3px1, pf4px1, pf3px2, pf4px2, f3, f4, 0, 0, 2)
print("F1(X1, X2) = {}".format(f3(x1, x2)))
print("F2(X1, X2) = {}".format(f4(x1, x2)))
test_newton()