forked from barongeng/mask_rcnn_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
491 lines (434 loc) · 19.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#!/usr/bin/env python3
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import argparse
import os
import shutil
import time
import sys
import glob
import copy
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
from colorama import Fore
from importlib import import_module
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import config
from dataloader import getDataloaders
from utils import (save_checkpoint, AverageMeter, adjust_learning_rate,
get_optimizer)
try:
from tensorboard_logger import configure, log_value
except BaseException:
configure = None
model_names = list(map(lambda n: os.path.basename(n)[:-3],
glob.glob('models/[A-Za-z]*.py')))
parser = argparse.ArgumentParser(
description='Image classification PK main script')
exp_group = parser.add_argument_group('exp', 'experiment setting')
exp_group.add_argument('--save', default='save/default-{}'.format(time.time()),
type=str, metavar='SAVE',
help='path to the experiment logging directory'
'(default: save/default-CLOCKTIME)')
exp_group.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
exp_group.add_argument('--evaluate', dest='evaluate', default='',
choices=['', 'val', 'test'],
help='eval mode: evaluate model on val/test set'
' (default: training mode)')
exp_group.add_argument('-f', '--force', dest='force', action='store_true',
help='force to overwrite existing save path')
exp_group.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
exp_group.add_argument('--no_tensorboard', dest='tensorboard',
action='store_false',
help='do not use tensorboard_logger for logging')
# dataset related
data_group = parser.add_argument_group('data', 'dataset setting')
data_group.add_argument('--data', metavar='D', default='coco-debug',
choices=config.datasets.keys(),
help='datasets: ' +
' | '.join(config.datasets.keys()) +
' (default: coco-train-minival)')
data_group.add_argument('--data-root', metavar='DIR', default='data/COCO',
help='path to dataset (default: data)')
data_group.add_argument('-j', '--num-workers', dest='num_workers', default=4,
type=int, metavar='N',
help='number of data loading workers (default: 4)')
data_group.add_argument('--normalized', action='store_true',
help='normalize the data into zero mean and unit std')
# model arch related
arch_group = parser.add_argument_group('arch', 'model architecture setting')
arch_group.add_argument('--arch', '-a', metavar='ARCH', default='faster_rcnn',
type=str, choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: faster_rcnn)')
arch_group.add_argument('--backbone', metavar='BACKBONE', default='resnet-50-c4',
type=str, help='backbone of RPN')
# arch_group.add_argument('-d', '--depth', default=56, type=int, metavar='D',
# help='depth (default=56)')
# arch_group.add_argument('--drop-rate', default=0.0, type=float,
# metavar='DROPRATE', help='dropout rate (default: 0.2)')
# arch_group.add_argument('--death-mode', default='none',
# choices=['none', 'linear', 'uniform'],
# help='death mode (default: none)')
# arch_group.add_argument('--death-rate', default=0.5, type=float,
# help='death rate rate (default: 0.5)')
# arch_group.add_argument('--bn-size', default=4, type=int,
# metavar='B', help='bottle neck ratio for DenseNet'
# ' (0 means dot\'t use bottle necks) (default: 4)')
# arch_group.add_argument('--compression', default=0.5, type=float,
# metavar='C', help='compression ratio for DenseNet'
# ' (1 means dot\'t use compression) (default: 0.5)')
# used to set the argument when to resume automatically
# arch_resume_names = ['arch', 'depth', 'death_mode', 'death_rate', 'death_rate',
# 'bn_size', 'compression']
# training related
optim_group = parser.add_argument_group('optimization', 'optimization setting')
optim_group.add_argument('--niters', default=160000, type=int, metavar='N',
help='number of total iterations to run (default: 160000)')
optim_group.add_argument('--start-iter', default=1, type=int, metavar='N',
help='manual iter number (useful on restarts, default: 1)')
optim_group.add_argument('--eval-freq', default=1000, type=int, metavar='N',
help='number of iterations to run before evaluation (default: 1000)')
optim_group.add_argument('--patience', default=0, type=int, metavar='N',
help='patience for early stopping'
'(0 means no early stopping)')
optim_group.add_argument('-b', '--batch-size', default=16, type=int,
metavar='N', help='mini-batch size (default: 64)')
optim_group.add_argument('--optimizer', default='sgd',
choices=['sgd', 'rmsprop', 'adam'], metavar='N',
help='optimizer (default=sgd)')
optim_group.add_argument('--lr', '--learning-rate', default=0.02, type=float,
metavar='LR',
help='initial learning rate (default: 0.02)')
optim_group.add_argument('--decay_rate', default=0.1, type=float, metavar='N',
help='decay rate of learning rate (default: 0.1)')
optim_group.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default=0.9)')
optim_group.add_argument('--no_nesterov', dest='nesterov',
action='store_false',
help='do not use Nesterov momentum')
optim_group.add_argument('--alpha', default=0.001, type=float, metavar='M',
help='alpha for Adam (default: 0.001)')
optim_group.add_argument('--beta1', default=0.9, type=float, metavar='M',
help='beta1 for Adam (default: 0.9)')
optim_group.add_argument('--beta2', default=0.999, type=float, metavar='M',
help='beta2 for Adam (default: 0.999)')
optim_group.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
def get_model(arch, **kargs):
m = import_module('models.' + arch)
model = m.create_model(**kargs)
# TODO: uncomment these and modify them
# if arch.startswith('alexnet') or arch.startswith('vgg'):
# model.features = torch.nn.DataParallel(model.features)
# model.cuda()
# else:
# model = torch.nn.DataParallel(model).cuda()
model.cuda()
return model
def main():
# parse arg and start experiment
global args
best_ap = -1.
best_iter = 0
args = parser.parse_args()
args.config_of_data = config.datasets[args.data]
# args.num_classes = config.datasets[args.data]['num_classes']
if configure is None:
args.tensorboard = False
print(Fore.RED +
'WARNING: you don\'t have tesnorboard_logger installed' +
Fore.RESET)
# optionally resume from a checkpoint
if args.resume:
if args.resume and os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
old_args = checkpoint['args']
print('Old args:')
print(old_args)
# set args based on checkpoint
if args.start_iter <= 0:
args.start_iter = checkpoint['iter'] + 1
best_iter = args.start_iter - 1
best_ap = checkpoint['best_ap']
for name in arch_resume_names:
if name in vars(args) and name in vars(old_args):
setattr(args, name, getattr(old_args, name))
model = get_model(**vars(args))
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (iter {})"
.format(args.resume, checkpoint['iter']))
else:
print(
"=> no checkpoint found at '{}'".format(
Fore.RED +
args.resume +
Fore.RESET),
file=sys.stderr)
return
else:
# create model
print("=> creating model '{}'".format(args.arch))
model = get_model(**vars(args))
# cudnn.benchmark = True
cudnn.enabled = False
# create dataloader
if args.evaluate == 'val':
train_loader, val_loader, test_loader = getDataloaders(
splits=('val'), **vars(args))
validate(val_loader, model, best_iter)
return
elif args.evaluate == 'test':
train_loader, val_loader, test_loader = getDataloaders(
splits=('test'), **vars(args))
validate(test_loader, model, best_iter)
return
else:
train_loader, val_loader, test_loader = getDataloaders(
splits=('train', 'val'), **vars(args))
# define optimizer
optimizer = get_optimizer(model, args)
# check if the folder exists
if os.path.exists(args.save):
print(Fore.RED + args.save + Fore.RESET
+ ' already exists!', file=sys.stderr)
if not args.force:
ans = input('Do you want to overwrite it? [y/N]:')
if ans not in ('y', 'Y', 'yes', 'Yes'):
os.exit(1)
print('remove existing ' + args.save)
shutil.rmtree(args.save)
os.makedirs(args.save)
print('create folder: ' + Fore.GREEN + args.save + Fore.RESET)
# copy code to save folder
if args.save.find('debug') < 0:
shutil.copytree(
'.',
os.path.join(
args.save,
'src'),
symlinks=True,
ignore=shutil.ignore_patterns(
'*.pyc',
'__pycache__',
'*.path.tar',
'*.pth',
'*.ipynb',
'.*',
'data',
'save',
'save_backup'))
# set up logging
global log_print, f_log
f_log = open(os.path.join(args.save, 'log.txt'), 'w')
def log_print(*args):
print(*args)
print(*args, file=f_log)
log_print('args:')
log_print(args)
print('model:', file=f_log)
print(model, file=f_log, flush=True)
# log_print('model:')
# log_print(model)
# log_print('optimizer:')
# log_print(vars(optimizer))
log_print('# of params:',
str(sum([p.numel() for p in model.parameters()])))
torch.save(args, os.path.join(args.save, 'args.pth'))
scores = ['iter\tlr\ttrain_loss\tval_ap']
if args.tensorboard:
configure(args.save, flush_secs=5)
for i in range(args.start_iter, args.niters + 1, args.eval_freq):
# print('iter {:3d} lr = {:.6e}'.format(i, lr))
# if args.tensorboard:
# log_value('lr', lr, i)
# train for args.eval_freq iterations
train_loss = train(train_loader, model, optimizer,
i, args.eval_freq)
i += args.eval_freq - 1
# evaluate on validation set
val_ap = validate(val_loader, model, i)
# save scores to a tsv file, rewrite the whole file to prevent
# accidental deletion
scores.append(('{}\t{}' + '\t{:.4f}' * 2)
.format(i, lr, train_loss, val_ap))
with open(os.path.join(args.save, 'scores.tsv'), 'w') as f:
print('\n'.join(scores), file=f)
# remember best err@1 and save checkpoint
# TODO: change this
is_best = val_ap > best_ap
if is_best:
best_ap = val_ap
best_iter = i
print(Fore.GREEN + 'Best var_err1 {}'.format(best_ap) +
Fore.RESET)
save_checkpoint({
'args': args,
'iter': i,
'best_iter': best_iter,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_ap': best_ap,
}, is_best, args.save)
if not is_best and i - best_iter >= args.patience > 0:
break
print('Best val_ap: {:.4f} at iter {}'.format(best_ap, best_iter))
def train(train_loader, model, optimizer, start_iter, num_iters):
batch_time = AverageMeter()
data_time = AverageMeter()
total_losses = AverageMeter()
rpn_losses = AverageMeter()
odn_losses = AverageMeter()
rpn_ce_losses = AverageMeter()
rpn_box_losses = AverageMeter()
odn_ce_losses = AverageMeter()
odn_box_losses = AverageMeter()
# switch to train mode
end_iter = start_iter + num_iters - 1
model.train()
end = time.time()
# for i in range(start_iter, start_iter + num_iters):
for i, (inputs, anns) in enumerate(train_loader):
i += start_iter
# get minibatch
# inputs, anns = next(train_loader)
lr = adjust_learning_rate(optimizer, args.lr, args.decay_rate,
i, args.niters) # TODO: add custom
# measure data loading time
data_time.update(time.time() - end)
optimizer.zero_grad()
# forward images one by one (TODO: support batch mode later, or
# multiprocess)
for j, input in enumerate(inputs):
input_anns = anns[j] # anns of this input
if len(input_anns) == 0:
continue
gt_bbox = np.vstack([ann['bbox'] + [ann['ordered_id']] for ann in input_anns])
im_info= [[input.size(1), input.size(2),
input_anns[0]['scale_ratio']]]
input_var= torch.autograd.Variable(input.unsqueeze(0).cuda(),
requires_grad=False)
cls_prob, bbox_pred, rois= model(input_var, im_info, gt_bbox)
loss= model.loss
loss.backward()
# record loss
total_losses.update(loss.data[0], input_var.size(0))
rpn_losses.update(model.rpn.loss.data[0], input_var.size(0))
rpn_ce_losses.update(
model.rpn.cross_entropy.data[0], input_var.size(0))
rpn_box_losses.update(
model.rpn.loss_box.data[0], input_var.size(0))
odn_losses.update(model.odn.loss.data[0], input_var.size(0))
odn_ce_losses.update(
model.odn.cross_entropy.data[0], input_var.size(0))
odn_box_losses.update(
model.odn.loss_box.data[0], input_var.size(0))
# do SGD step
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.print_freq > 0 and (i + 1) % args.print_freq == 0:
print('iter: [{0}] '
'Time {batch_time.val:.3f} '
'Data {data_time.val:.3f} '
'Loss {total_losses.val:.4f} '
'RPN {rpn_losses.val:.4f} '
'{rpn_ce_losses.val:.4f} '
'{rpn_box_losses.val:.4f} '
'ODN {odn_losses.val:.4f} '
'{odn_ce_losses.val:.4f} '
'{odn_box_losses.val:.4f} '
.format(i, batch_time=batch_time,
data_time=data_time,
total_losses=total_losses,
rpn_losses=rpn_losses,
rpn_ce_losses=rpn_ce_losses,
rpn_box_losses=rpn_box_losses,
odn_losses=odn_losses,
odn_ce_losses=odn_ce_losses,
odn_box_losses=odn_box_losses))
del inputs
del anns
if i == end_iter:
break
print('iter: [{0}-{1}] '
'Time {batch_time.avg:.3f} '
'Data {data_time.avg:.3f} '
'Loss {total_losses.avg:.4f} '
'RPN {rpn_losses.avg:.4f} '
'{rpn_ce_losses.avg:.4f} '
'{rpn_box_losses.avg:.4f} '
'ODN {odn_losses.avg:.4f} '
'{odn_ce_losses.avg:.4f} '
'{odn_box_losses.avg:.4f} '
.format(start_iter, end_iter,
batch_time=batch_time,
data_time=data_time,
total_losses=total_losses,
rpn_losses=rpn_losses,
rpn_ce_losses=rpn_ce_losses,
rpn_box_losses=rpn_box_losses,
odn_losses=odn_losses,
odn_ce_losses=odn_ce_losses,
odn_box_losses=odn_box_losses))
if args.tensorboard:
log_value('train_total_loss', total_losses.avg, end_iter)
log_value('train_rpn_loss', rpn_losses.avg, end_iter)
log_value('train_rpn_ce_loss', rpn_ce_losses.avg, end_iter)
log_value('train_rpn_box_loss', rpn_box_losses.avg, end_iter)
log_value('train_odn_loss', odn_losses.avg, end_iter)
log_value('train_odn_ce_loss', odn_ce_losses.avg, end_iter)
log_value('train_odn_box_loss', odn_box_losses.avg, end_iter)
return total_losses.avg
def validate(val_loader, model, i, silence=False):
batch_time = AverageMeter()
coco_gt = val_loader.dataset.coco
coco_pred = COCO()
coco_pred.dataset['images'] = [img for img in coco_gt.datasets['images']]
coco_pred.dataset['categories'] = copy.deepcopy(coco_gt.dataset['categories'])
id = 0
# switch to evaluate mode
model.eval()
end = time.time()
for i, (inputs, anns) in enumerate(val_loader):
# forward images one by one (TODO: support batch mode later, or
# multiprocess)
for j, input in enumerate(inputs):
input_anns= anns[j] # anns of this input
gt_bbox= np.vstack([ann['bbox'] + [ann['ordered_id']] for ann in input_anns])
im_info= [[input.size(1), input.size(2),
input_anns[0]['scale_ratio']]]
input_var= Variable(input.unsqueeze(0),
requires_grad=False).cuda()
cls_prob, bbox_pred, rois = model(input_var, im_info)
scores, pred_boxes = model.interpret_outputs(cls_prob, bbox_pred, rois, im_info)
print(scores, pred_boxes)
# for i in range(scores.shape[0]):
# measure elapsed time
batch_time.update(time.time() - end)
end= time.time()
coco_pred.createIndex()
coco_eval = COCOeval(coco_gt, coco_pred, 'bbox')
coco_eval.params.imgIds= sorted(coco_gt.getImgIds())
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
print('iter: [{0}] '
'Time {batch_time.avg:.3f} '
'Val Stats: {1}'
.format(i, coco_eval.stats,
batch_time=batch_time))
return coco_eval.stats[0]
if __name__ == '__main__':
main()