We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I obtain some errors while trying to run the MMSA AutoML example with the OJ Dataset.
from azureml.core import Experiment
experiment = Experiment(workspace=ws, name='mmsa-automl-training')
from azureml.core.dataset import Dataset
oj_data_small_train_ds = Dataset.get_by_name(workspace=ws, name='oj_data_small_train') oj_data_small_train_input = oj_data_small_train_ds.as_named_input(name='oj_data_small_train')
from azureml.core.compute import AmlCompute from azureml.core.compute import ComputeTarget
amlcompute_cluster_name = "cpu-cluster"
found = False
cts = ws.compute_targets if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute': found = True print('Found existing compute target.') compute = cts[amlcompute_cluster_name] [...]
import logging
partition_column_names = ['Store', 'Brand']
automl_settings = { "task" : 'forecasting', "primary_metric" : 'normalized_root_mean_squared_error', "iteration_timeout_minutes" : 20, "iterations" : 15, "experiment_timeout_hours" : 1, "label_column_name" : 'Quantity', "n_cross_validations" : 3, # "verbosity" : logging.INFO, "debug_log": 'automl_oj_sales_debug.txt', "time_column_name": 'WeekStarting', "max_horizon" : 20, "track_child_runs": False, "partition_column_names": partition_column_names, "grain_column_names": ['Store', 'Brand'], "pipeline_fetch_max_batch_size": 15 }
from azureml.contrib.automl.pipeline.steps import AutoMLPipelineBuilder
train_steps = AutoMLPipelineBuilder.get_many_models_train_steps(experiment=experiment, automl_settings=automl_settings, train_data=oj_data_small_train_ds, compute_target=compute, partition_column_names=partition_column_names, node_count=5, process_count_per_node=20, run_invocation_timeout=3700, output_datastore=default_store)
I will link the error message in a text file. MMSA-AutoML.txt
I run this with the following Conda environment:
name: azureml-env channels:
The text was updated successfully, but these errors were encountered:
SKrupa
cartacioS
No branches or pull requests
I obtain some errors while trying to run the MMSA AutoML example with the OJ Dataset.
Create the experiment
from azureml.core import Experiment
experiment = Experiment(workspace=ws, name='mmsa-automl-training')
Connect to the dataset
from azureml.core.dataset import Dataset
oj_data_small_train_ds = Dataset.get_by_name(workspace=ws, name='oj_data_small_train')
oj_data_small_train_input = oj_data_small_train_ds.as_named_input(name='oj_data_small_train')
Choose a compute target
from azureml.core.compute import AmlCompute
from azureml.core.compute import ComputeTarget
Choose a name for your cluster.
amlcompute_cluster_name = "cpu-cluster"
found = False
Check if this compute target already exists in the workspace.
cts = ws.compute_targets
if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'AmlCompute':
found = True
print('Found existing compute target.')
compute = cts[amlcompute_cluster_name]
[...]
Select AutoML settings
import logging
partition_column_names = ['Store', 'Brand']
automl_settings = {
"task" : 'forecasting',
"primary_metric" : 'normalized_root_mean_squared_error',
"iteration_timeout_minutes" : 20,
"iterations" : 15,
"experiment_timeout_hours" : 1,
"label_column_name" : 'Quantity',
"n_cross_validations" : 3,
# "verbosity" : logging.INFO,
"debug_log": 'automl_oj_sales_debug.txt',
"time_column_name": 'WeekStarting',
"max_horizon" : 20,
"track_child_runs": False,
"partition_column_names": partition_column_names,
"grain_column_names": ['Store', 'Brand'],
"pipeline_fetch_max_batch_size": 15
}
Create the AutoML pipeline
from azureml.contrib.automl.pipeline.steps import AutoMLPipelineBuilder
train_steps = AutoMLPipelineBuilder.get_many_models_train_steps(experiment=experiment,
automl_settings=automl_settings,
train_data=oj_data_small_train_ds,
compute_target=compute,
partition_column_names=partition_column_names,
node_count=5,
process_count_per_node=20,
run_invocation_timeout=3700,
output_datastore=default_store)
I will link the error message in a text file.
MMSA-AutoML.txt
I run this with the following Conda environment:
name: azureml-env
channels:
dependencies:
The text was updated successfully, but these errors were encountered: