-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_balancer_parameters.py
55 lines (37 loc) · 2.03 KB
/
load_balancer_parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from typing import Optional
from utils import KernelName, OptimizerName, ClusteringAlgorithm, ClusteringScoringMethod
class LoadBalancerParameters:
"""Super class for Model's parameters to predict execution times."""
number_of_samples: Optional[int]
def __init__(self, number_of_samples: Optional[int]):
self.number_of_samples = number_of_samples
class SVMParameters(LoadBalancerParameters):
kernel: KernelName
optimizer: OptimizerName
def __init__(self, kernel: KernelName, optimizer: OptimizerName, number_of_samples: Optional[int] = None):
super(SVMParameters, self).__init__(number_of_samples)
self.kernel = kernel
self.optimizer = optimizer
def __str__(self):
return (f'SVMParameters(number_of_samples={self.number_of_samples}, kernel="{self.kernel}", '
f'optimizer="{self.optimizer}")')
class ClusteringParameters(LoadBalancerParameters):
algorithm: ClusteringAlgorithm
number_of_clusters: int
scoring_method: ClusteringScoringMethod
def __init__(self, algorithm: ClusteringAlgorithm, number_of_clusters: int, scoring_method: ClusteringScoringMethod,
number_of_samples: Optional[int] = None):
super(ClusteringParameters, self).__init__(number_of_samples)
self.algorithm = algorithm
self.number_of_clusters = number_of_clusters
self.scoring_method = scoring_method
def __str__(self):
return (f'ClusteringParameters(number_of_samples={self.number_of_samples}, algorithm="{self.algorithm}", '
f'number_of_clusters="{self.number_of_clusters}, scoring_method="{self.scoring_method}")')
class RFParameters(LoadBalancerParameters):
number_of_trees: int
def __init__(self, number_of_trees: int, number_of_samples: Optional[int] = None):
super(RFParameters, self).__init__(number_of_samples)
self.number_of_trees = number_of_trees
def __str__(self):
return f'ClusteringParameters(number_of_samples={self.number_of_samples}, trees={self.number_of_trees})'