-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathmarket_stats.py
431 lines (382 loc) · 15.2 KB
/
market_stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
"""
import configargparse
from stats.stats import Stats
def main():
stats = Stats()
stats.run()
if __name__ == "__main__":
arg_parser = configargparse.get_argument_parser()
arg_parser.add('-c', '--config', is_config_file=True, help='config file path', default='mosquito.ini')
arg_parser.add("--live", help="REAL trading mode", action='store_true')
arg_parser.add('-v', '--verbosity', help='Verbosity', action='store_true')
args = arg_parser.parse_known_args()[0]
main()
"""
# Works on python3 / requires: pandas, numpy, pymongo, bokeh
# BTC: 1A7K4kgXLSSzvDRjvoGwomvhrNU4CKezEp
# LTC: LWShTeRrZpYS4aJhb6JdP3R9tNFMnZiDo2
import logging
from operator import itemgetter
from math import pi
from time import time
from pymongo import MongoClient
import pandas as pd
import numpy as np
from bokeh.plotting import figure, show
from bokeh.models import NumeralTickFormatter
from bokeh.models import LinearAxis, Range1d
logger = logging.getLogger(__name__)
def rsi(df, window, targetcol='weightedAverage', colname='rsi'):
""" Calculates the Relative Strength Index (RSI) from a pandas dataframe
http://stackoverflow.com/a/32346692/3389859
"""
series = df[targetcol]
delta = series.diff().dropna()
u = delta * 0
d = u.copy()
u[delta > 0] = delta[delta > 0]
d[delta < 0] = -delta[delta < 0]
# first value is sum of avg gains
u[u.index[window - 1]] = np.mean(u[:window])
u = u.drop(u.index[:(window - 1)])
# first value is sum of avg losses
d[d.index[window - 1]] = np.mean(d[:window])
d = d.drop(d.index[:(window - 1)])
rs = u.ewm(com=window - 1,
ignore_na=False,
min_periods=0,
adjust=False).mean() / d.ewm(com=window - 1,
ignore_na=False,
min_periods=0,
adjust=False).mean()
df[colname] = 100 - 100 / (1 + rs)
df[colname].fillna(df[colname].mean(), inplace=True)
return df
def sma(df, window, targetcol='close', colname='sma'):
""" Calculates Simple Moving Average on a 'targetcol' in a pandas dataframe
"""
df[colname] = df[targetcol].rolling(
min_periods=1, window=window, center=False).mean()
return df
def ema(df, window, targetcol='close', colname='ema', **kwargs):
""" Calculates Expodential Moving Average on a 'targetcol' in a pandas
dataframe """
df[colname] = df[targetcol].ewm(
span=window,
min_periods=kwargs.get('min_periods', 1),
adjust=kwargs.get('adjust', True),
ignore_na=kwargs.get('ignore_na', False)
).mean()
df[colname].fillna(df[colname].mean(), inplace=True)
return df
def macd(df, fastcol='emafast', slowcol='sma', colname='macd'):
""" Calculates the differance between 'fastcol' and 'slowcol' in a pandas
dataframe """
df[colname] = df[fastcol] - df[slowcol]
return df
def bbands(df, window, targetcol='close', stddev=2.0):
""" Calculates Bollinger Bands for 'targetcol' of a pandas dataframe """
if not 'sma' in df:
df = sma(df, window, targetcol)
df['sma'].fillna(df['sma'].mean(), inplace=True)
df['bbtop'] = df['sma'] + stddev * df[targetcol].rolling(
min_periods=1,
window=window,
center=False).std()
df['bbtop'].fillna(df['bbtop'].mean(), inplace=True)
df['bbbottom'] = df['sma'] - stddev * df[targetcol].rolling(
min_periods=1,
window=window,
center=False).std()
df['bbbottom'].fillna(df['bbbottom'].mean(), inplace=True)
df['bbrange'] = df['bbtop'] - df['bbbottom']
df['bbpercent'] = ((df[targetcol] - df['bbbottom']) / df['bbrange']) - 0.5
return df
def plotRSI(p, df, plotwidth=800, upcolor='green', downcolor='red'):
# create y axis for rsi
p.extra_y_ranges = {"rsi": Range1d(start=0, end=100)}
p.add_layout(LinearAxis(y_range_name="rsi"), 'right')
# create rsi 'zone' (30-70)
p.patch(np.append(df['date'].values, df['date'].values[::-1]),
np.append([30 for i in df['rsi'].values],
[70 for i in df['rsi'].values[::-1]]),
color='olive',
fill_alpha=0.2,
legend="rsi",
y_range_name="rsi")
candleWidth = (df.iloc[2]['date'].timestamp() -
df.iloc[1]['date'].timestamp()) * plotwidth
# plot green bars
inc = df.rsi >= 50
p.vbar(x=df.date[inc],
width=candleWidth,
top=df.rsi[inc],
bottom=50,
fill_color=upcolor,
line_color=upcolor,
alpha=0.5,
y_range_name="rsi")
# Plot red bars
dec = df.rsi <= 50
p.vbar(x=df.date[dec],
width=candleWidth,
top=50,
bottom=df.rsi[dec],
fill_color=downcolor,
line_color=downcolor,
alpha=0.5,
y_range_name="rsi")
def plotMACD(p, df, color='blue'):
# plot macd
p.line(df['date'], df['macd'], line_width=4,
color=color, alpha=0.8, legend="macd")
p.yaxis[0].formatter = NumeralTickFormatter(format='0.00000000')
def plotCandlesticks(p, df, plotwidth=750, upcolor='green', downcolor='red'):
candleWidth = (df.iloc[2]['date'].timestamp() -
df.iloc[1]['date'].timestamp()) * plotwidth
# Plot candle 'shadows'/wicks
p.segment(x0=df.date,
y0=df.high,
x1=df.date,
y1=df.low,
color="black",
line_width=2)
# Plot green candles
inc = df.close > df.open
p.vbar(x=df.date[inc],
width=candleWidth,
top=df.open[inc],
bottom=df.close[inc],
fill_color=upcolor,
line_width=0.5,
line_color='black')
# Plot red candles
dec = df.open > df.close
p.vbar(x=df.date[dec],
width=candleWidth,
top=df.open[dec],
bottom=df.close[dec],
fill_color=downcolor,
line_width=0.5,
line_color='black')
# format price labels
p.yaxis[0].formatter = NumeralTickFormatter(format='0.00000000')
def plotVolume(p, df, plotwidth=800, upcolor='green', downcolor='red'):
candleWidth = (df.iloc[2]['date'].timestamp() -
df.iloc[1]['date'].timestamp()) * plotwidth
# create new y axis for volume
p.extra_y_ranges = {"volume": Range1d(start=min(df['volume'].values),
end=max(df['volume'].values))}
p.add_layout(LinearAxis(y_range_name="volume"), 'right')
# Plot green candles
inc = df.close > df.open
p.vbar(x=df.date[inc],
width=candleWidth,
top=df.volume[inc],
bottom=0,
alpha=0.1,
fill_color=upcolor,
line_color=upcolor,
y_range_name="volume")
# Plot red candles
dec = df.open > df.close
p.vbar(x=df.date[dec],
width=candleWidth,
top=df.volume[dec],
bottom=0,
alpha=0.1,
fill_color=downcolor,
line_color=downcolor,
y_range_name="volume")
def plotBBands(p, df, color='navy'):
# Plot bbands
p.patch(np.append(df['date'].values, df['date'].values[::-1]),
np.append(df['bbbottom'].values, df['bbtop'].values[::-1]),
color=color,
fill_alpha=0.1,
legend="bband")
# plot sma
p.line(df['date'], df['sma'], color=color, alpha=0.9, legend="sma")
def plotMovingAverages(p, df):
# Plot moving averages
p.line(df['date'], df['emaslow'],
color='orange', alpha=0.9, legend="emaslow")
p.line(df['date'], df['emafast'],
color='red', alpha=0.9, legend="emafast")
class Charter(object):
""" Retrieves 5min candlestick data for a market and saves it in a mongo
db collection. Can display data in a dataframe or bokeh plot."""
def __init__(self, api):
"""
api = poloniex api object
"""
self.api = api
def __call__(self, pair, frame=False):
""" returns raw chart data from the mongo database, updates/fills the
data if needed, the date column is the '_id' of each candle entry, and
the date column has been removed. Use 'frame' to restrict the amount
of data returned.
Example: 'frame=api.YEAR' will return last years data
"""
# use last pair and period if not specified
if not frame:
frame = self.api.YEAR * 10
dbcolName = pair + 'chart'
# get db connection
db = MongoClient()['poloniex'][dbcolName]
# get last candle
try:
last = sorted(
list(db.find({"_id": {"$gt": time() - 60 * 20}})),
key=itemgetter('_id'))[-1]
except:
last = False
# no entrys found, get all 5min data from poloniex
if not last:
logger.warning('%s collection is empty!', dbcolName)
new = self.api.returnChartData(pair,
period=60 * 5,
start=time() - self.api.YEAR * 13)
else:
new = self.api.returnChartData(pair,
period=60 * 5,
start=int(last['_id']))
# add new candles
updateSize = len(new)
logger.info('Updating %s with %s new entrys!',
dbcolName, str(updateSize))
# show the progess
for i in range(updateSize):
print("\r%s/%s" % (str(i + 1), str(updateSize)), end=" complete ")
date = new[i]['date']
del new[i]['date']
db.update_one({'_id': date}, {"$set": new[i]}, upsert=True)
print('')
logger.debug('Getting chart data from db')
# return data from db (sorted just in case...)
return sorted(
list(db.find({"_id": {"$gt": time() - frame}})),
key=itemgetter('_id'))
def dataFrame(self, pair, frame=False, zoom=False, window=120):
""" returns pandas DataFrame from raw db data with indicators.
zoom = passed as the resample(rule) argument to 'merge' candles into a
different timeframe
window = number of candles to use when calculating indicators
"""
data = self.__call__(pair, frame)
# make dataframe
df = pd.DataFrame(data)
# set date column
df['date'] = pd.to_datetime(df["_id"], unit='s')
if zoom:
df.set_index('date', inplace=True)
df = df.resample(rule=zoom,
closed='left',
label='left').apply({'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'quoteVolume': 'sum',
'volume': 'sum',
'weightedAverage': 'mean'})
df.reset_index(inplace=True)
# calculate/add sma and bbands
df = bbands(df, window)
# add slow ema
df = ema(df, window, colname='emaslow')
# add fast ema
df = ema(df, int(window // 3.5), colname='emafast')
# add macd
df = macd(df)
# add rsi
df = rsi(df, window // 5)
# add candle body and shadow size
df['bodysize'] = df['close'] - df['open']
df['shadowsize'] = df['high'] - df['low']
df['percentChange'] = df['close'].pct_change()
df.dropna(inplace=True)
return df
def graph(self, pair, frame=False, zoom=False,
window=120, plot_width=1000, min_y_border=40,
border_color="whitesmoke", background_color="white",
background_alpha=0.4, legend_location="top_left",
tools="pan,wheel_zoom,reset"):
"""
Plots market data using bokeh and returns a 2D array for gridplot
"""
df = self.dataFrame(pair, frame, zoom, window)
#
# Start Candlestick Plot -------------------------------------------
# create figure
candlePlot = figure(
x_axis_type=None,
y_range=(min(df['low'].values) - (min(df['low'].values) * 0.2),
max(df['high'].values) * 1.2),
x_range=(df.tail(int(len(df) // 10)).date.min().timestamp() * 1000,
df.date.max().timestamp() * 1000),
tools=tools,
title=pair,
plot_width=plot_width,
plot_height=int(plot_width // 2.7),
toolbar_location="above")
# add plots
# plot volume
plotVolume(candlePlot, df)
# plot candlesticks
plotCandlesticks(candlePlot, df)
# plot bbands
plotBBands(candlePlot, df)
# plot moving aves
plotMovingAverages(candlePlot, df)
# set legend location
candlePlot.legend.location = legend_location
# set background color
candlePlot.background_fill_color = background_color
candlePlot.background_fill_alpha = background_alpha
# set border color and size
candlePlot.border_fill_color = border_color
candlePlot.min_border_left = min_y_border
candlePlot.min_border_right = candlePlot.min_border_left
#
# Start RSI/MACD Plot -------------------------------------------
# create a new plot and share x range with candlestick plot
rsiPlot = figure(plot_height=int(candlePlot.plot_height // 2.5),
x_axis_type="datetime",
y_range=(-(max(df['macd'].values) * 2),
max(df['macd'].values) * 2),
x_range=candlePlot.x_range,
plot_width=candlePlot.plot_width,
title=None,
toolbar_location=None)
# plot macd
plotMACD(rsiPlot, df)
# plot rsi
plotRSI(rsiPlot, df)
# set background color
rsiPlot.background_fill_color = candlePlot.background_fill_color
rsiPlot.background_fill_alpha = candlePlot.background_fill_alpha
# set border color and size
rsiPlot.border_fill_color = candlePlot.border_fill_color
rsiPlot.min_border_left = candlePlot.min_border_left
rsiPlot.min_border_right = candlePlot.min_border_right
rsiPlot.min_border_bottom = 20
# orient x labels
rsiPlot.xaxis.major_label_orientation = pi / 4
# set legend
rsiPlot.legend.location = legend_location
# set dataframe 'date' as index
df.set_index('date', inplace=True)
# return layout and df
return [[candlePlot], [rsiPlot]], df
if __name__ == '__main__':
from poloniex import Poloniex
from bokeh.layouts import gridplot
logging.basicConfig(level=logging.DEBUG)
logging.getLogger("poloniex").setLevel(logging.INFO)
logging.getLogger('requests').setLevel(logging.ERROR)
api = Poloniex(jsonNums=float)
layout, df = Charter(api).graph('USDT_BTC', window=90,
frame=api.YEAR * 12, zoom='1W')
print(df.tail())
p = gridplot(layout)
show(p)