title | nav_order | layout |
---|---|---|
Home |
1 |
home |
Welcome everyone! In the New Member Education Program (NMEP), we'll be paving a sturdy ML foundation for you—from classical ML to diffusion models. Come hungry to learn and get to know the rest of your class!
Your instructor this semester is Sara Eginova!
<tbody>
<tr> <th style="max-width: 30px;">Week</th> <th>Date</th> <th>Lecture</th> <th>Assignments</th> <th>Lecturer(s)</th> </tr>
<tr>
<td style="max-width: 30px;">1</td>
<td>Sep 23</td>
<td>Intro + Background Review (<a href="https://docs.google.com/presentation/d/16QicPaSS0YFcJvTFSn1yea5n_ORVMcbxCHjeDyoQSKg/edit?usp=drive_link">slides</a>)</td>
<td><span class="label"><strong>Lecture Exercise</strong></span> <a href="https://drive.google.com/file/d/1UM2w5BrJrEcI69_eqhIn-t1yrdC7XzY9/view?usp=drive_link">Rockfall</a><br>
<span class="label label-yellow"><strong>Homework 0</strong></span>
<a href="/fa24-nmep/assets/hw0/hw0-math.pdf">Math Review</a>
<a href="/fa24-nmep/assets/hw0/hw0-pandas.ipynb">Pandas</a>
<a href="/fa24-nmep/assets/hw0/hw0-numpy.ipynb">Numpy</a></td>
<td>Tim, Tejas</td>
</tr>
<tr>
<td style="max-width: 30px;">2</td>
<td>Sep 30</td>
<td>Classical ML (<a href="https://docs.google.com/presentation/d/13NwgyAVt6c79NgEvChtRHKd2ntMheDY2qmMQlMmAAS4/edit?usp=drive_link">slides</a>)</td>
<td></td>
<td>Tejas</td>
</tr>
<tr>
<td style="max-width: 30px;">3</td>
<td>Oct 7</td>
<td>Deep Learning (<a href="https://docs.google.com/presentation/d/1IaGEpob6Qa-fMGCZFIUshslQtlx97rVo3ZvB59ddKO8/edit?usp=drive_link">slides</a>)</td>
<td><span class="label label-yellow"><strong>Homework 1</strong></span>
<a href="/fa24-nmep/assets/hw1/hw1-review-worksheet.pdf">Neural Networks Review</a>
<a href="https://drive.google.com/file/d/1Up6oxVNy7W_htigekfo2uYSslChIcEof/view?usp=drive_link">Intro to Pytorch</a>
<a href="https://drive.google.com/drive/folders/1KQLOSiGAPHW-6ORCwtECIkyfUqdNklSu?usp=drive_link">Word Embeddings</a>
</td>
<td>Tim</td>
</tr>
<tr>
<td style="max-width: 30px;">4</td>
<td>Oct 14</td>
<td>CNNs <s>& Object Detection</s> (<a href="https://docs.google.com/presentation/d/1FQ-RNjrANvdVjQIY4LFaHAlm9-hNVxRftKNYj56n2K4/edit?usp=sharing">slides</a>)</td>
<td><span class="label label-yellow"><strong>Homework 2</strong></span>
<a href="https://github.com/mlberkeley/fa24-nmep-hw2/">Model Zhu</a>
</td>
<td>Tejas</td>
</tr>
<tr>
<td style="max-width: 30px;">5</td>
<td>Oct 21</td>
<td>No Lecture (social!!)</td>
<td></td>
<td></td>
</tr>
<tr>
<td style="max-width: 30px;">6</td>
<td>Oct 28</td>
<td>NLP & Transformers 1 (<a href="https://docs.google.com/presentation/d/1fTUTXPFuVr-kULgG36PDJVrSdbRMfSLf_tQGnCGAXUY/edit#slide=id.g2fa7bb19c0a_0_0">slides</a>)</td>
<td><span class="label label-yellow"><strong>Homework 3</strong></span>
<a href="https://github.com/tejasprabhune/hw3-transformers">Transformers</a>
<a href="/fa24-nmep/assets/hw3/hw3-worksheet.pdf">Worksheet</a>
</td>
<td>Sara</td>
</tr>
<tr>
<td style="max-width: 30px;">7</td>
<td>Nov 4</td>
<td>Transformers 2 (<a href="https://docs.google.com/presentation/d/1-qNWqIUD-ld3ijqEhUexp6Usg_ze39hQXXrmdwLc-nI/edit#slide=id.g2fa7bb19c0a_0_0">slides</a>)</td>
<td></td>
<td>Derek</td>
</tr>
<tr>
<td style="max-width: 30px;">8</td>
<td>Nov 11</td>
<td>Self-supervised Learning (<a href="https://docs.google.com/presentation/d/1sOigbq6bcI3TIiQD3necn3LrmqJKEJOIoDJnxSN7sfE/edit?usp=drive_link">slides</a>)</td>
<td><span class="label label-green"><strong>Final Project Proposal</strong></span></td>
<td>Tejas</td>
</tr>
<tr>
<td style="max-width: 30px;">9</td>
<td>Nov 18</td>
<td>RL (<a href="https://docs.google.com/presentation/d/1ewH5WvMKY0v0n8izLtlwmAskf5zdIcOftNFbO6uP474/edit?usp=sharing">slides</a>)</td>
<td></td>
<td>Saathvik</td>
</tr>
<tr>
<td style="max-width: 30px;">10</td>
<td>Nov 25</td>
<td>Ethics, Object Detection (<a href="https://docs.google.com/presentation/d/1FQ-RNjrANvdVjQIY4LFaHAlm9-hNVxRftKNYj56n2K4/edit?usp=sharing">slides</a>)</td>
<td><span class="label label-green"><strong>Final Project Checkpoint</strong></span><br><span class="label"><strong>Extra Exercise</strong></span> <a href="https://colab.research.google.com/drive/1nDIw-Kj3_6bvhXpBW_W_jMuoNvJeBVo9?usp=drive_link">YOLO</a></td>
<td>Tim</td>
</tr>
<tr>
<td style="max-width: 30px;">11</td>
<td>Dec 2</td>
<td>GANs (<a href="https://docs.google.com/presentation/d/17QeISP3fi5MZN-n9_-8PKVMe9Q-qrmlwkCOUAXv2LZw/edit?usp=drive_link">slides</a>), Diffusion (<a href="https://docs.google.com/presentation/d/1Dy9_zs4MrgM7w4IY8lrikp_orFUGNYgnwNuhnsGF61o/edit?usp=drive_link">slides</a>)</td>
<td><span class="label label-red"><strong>NMEP Final</strong></span>
<a href="https://calendar.google.com/calendar/u/0/appointments/schedules/AcZssZ2OIBta2aWKLomTShrIrXbohnK0j6ERU7zkiJmBsAQrUkBFn2t7we6KJzza3gPvFbhLFP-s44ry">Signups 1</a>
<a href="https://calendar.google.com/calendar/u/0/appointments/schedules/AcZssZ2Z09UrGFK02sdKhja3VvnVJCc5hSF_9URqSvP038A9YXuKCpjWyzRioGCd683x6U4bngWZARtS">Signups 2</a> (if the other one is full)
<br><span class="label"><strong>Lecture Exercise</strong></span> <a href="https://github.com/tejasprabhune/lec10-diffusion">Diffusion</a></td>
<td>Tejas, Nemer</td>
</tr>
<tr>
<td style="max-width: 30px;">12</td>
<td>Dec 9</td>
<td>No Lecture (final presentations)</td>
<td><span class="label label-green"><strong>Final Project Due</strong></span></td>
<td></td>
</tr>
</tbody>