-
Notifications
You must be signed in to change notification settings - Fork 538
/
Copy pathmain.py
executable file
·738 lines (648 loc) · 37.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
def define_env(env):
@env.macro
def mlperf_inference_implementation_readme(
spaces,
model,
implementation,
*,
implementation_tips=True,
setup_tips=True,
run_tips=True,
skip_test_query_count=False,
fixed_scenarios=[],
devices=[],
frameworks=[],
categories=[],
extra_variation_tags="",
extra_input_string="",
extra_docker_input_string="",
):
pre_space = ""
for i in range(1, spaces):
pre_space = pre_space + " "
f_pre_space = pre_space
pre_space += " "
content = ""
execution_envs = ["Docker", "Native"]
code_version = "r5.0-dev"
implementation_run_options = []
if model == "rnnt":
code_version = "r4.0"
if implementation == "reference":
# Tip
if "99.9" not in model and implementation_tips:
content += f"\n{pre_space}!!! tip\n\n"
content += f"{pre_space} - MLCommons reference implementations are only meant to provide a rules compliant reference implementation for the submitters and in most cases are not best performing. If you want to benchmark any system, it is advisable to use the vendor MLPerf implementation for that system like Nvidia, Intel etc.\n\n"
if not devices:
devices = ["CPU", "CUDA", "ROCm"]
if not frameworks:
if model.lower() == "resnet50":
frameworks = ["Onnxruntime", "Tensorflow", "Deepsparse"]
elif model.lower() == "retinanet":
frameworks = ["Onnxruntime", "Pytorch"]
elif "bert" in model.lower():
frameworks = ["Pytorch", "Deepsparse"]
elif "llama3" in model.lower():
frameworks = ["Pytorch"]
else:
frameworks = ["Pytorch"]
elif implementation == "nvidia":
if model in ["mixtral-8x7b"]:
return pre_space + " WIP"
devices = ["CUDA"]
frameworks = ["TensorRT"]
elif implementation == "amd":
devices = ["cuda"]
frameworks = ["pytorch"]
execution_envs.remove("Docker")
elif implementation == "neuralmagic":
devices = ["CUDA"]
frameworks = ["pytorch"]
elif implementation == "intel":
# Tip
if "99.9" not in model and implementation_tips:
content += f"\n{pre_space}!!! tip\n\n"
content += f"{pre_space} - Intel MLPerf inference implementation is available only for datacenter category and has been tested only on a limited number of systems. Most of the benchmarks using Intel implementation require at least Intel Sapphire Rapids or higher CPU generation.\n\n"
if model not in [
"bert-99",
"bert-99.9",
"gptj-99",
"gptj-99.9",
"resnet50",
"retinanet",
"3d-unet-99",
"3d-unet-99.9",
"dlrm-v2-99",
"dlrm-v2-99.9",
"sdxl",
]:
return pre_space + " WIP"
if model in [
"bert-99",
"bert-99.9",
"retinanet",
"3d-unet-99",
"3d-unet-99.9",
]:
code_version = "r4.0"
devices = ["CPU"]
frameworks = ["Pytorch"]
elif implementation == "qualcomm":
if model not in ["resnet50", "retinanet", "bert-99", "bert-99.9"]:
return pre_space + " WIP"
devices = ["QAIC"]
frameworks = ["Glow"]
elif implementation == "cpp":
if not devices:
devices = ["CPU", "CUDA"]
frameworks = ["Onnxruntime"]
elif implementation == "ctuning-cpp":
fixed_scenarios = ["SingleStream"]
devices = ["CPU"]
if model.lower() == "resnet50":
frameworks = ["TFLite"]
else:
frameworks = []
if not categories:
if model.lower() == "bert-99.9":
categories = ["Datacenter"]
elif (
"dlrm" in model.lower()
or "llama2" in model.lower()
or "mixtral" in model.lower()
or "llama3" in model.lower()
):
categories = ["Datacenter"]
else:
categories = ["Edge", "Datacenter"]
# model name
content += f"{pre_space}{model.upper()}\n\n"
final_run_mode = "valid" if "short" not in extra_variation_tags else "test"
for category in categories:
if category == "Edge":
scenarios = ["Offline", "SingleStream"]
if model.lower() in [
"resnet50", "retinanet"] and not "MultiStream" in scenarios: # MultiStream was duplicating
scenarios.append("MultiStream")
elif category == "Datacenter":
scenarios = ["Offline", "Server"]
if fixed_scenarios:
scenarios = [
scenario for scenario in scenarios if scenario in fixed_scenarios]
content += f"{pre_space}=== \"{category.lower()}\"\n\n"
cur_space = pre_space + " "
scenarios_string = ", ".join(scenarios)
content += f"{cur_space}### {category} category \n\n{cur_space} In the {category.lower()} category, {model} has {scenarios_string} scenarios and all the scenarios are mandatory for a closed division submission.\n\n"
for framework in frameworks:
cur_space1 = cur_space + " "
content += f'{cur_space}=== "{framework}"\n'
content += f"{cur_space1}#### {framework} framework\n\n"
for device in devices:
if framework.lower() == "deepsparse":
if device.lower() != "cpu":
continue
cur_space2 = cur_space1 + " "
cur_space3 = cur_space2 + " "
cur_space4 = cur_space3 + " "
content += f"{cur_space1}=== \"{device}\"\n"
content += f"{cur_space2}##### {device} device\n\n"
# minimum system requirements
content += get_min_system_requirements(
cur_space2, model, implementation, device
)
# to select the execution environments(currently Docker and
# Native)
for execution_env in execution_envs:
if (
device == "ROCm" or implementation == "qualcomm"
) and execution_env == "Docker":
continue # docker not currently supported for Qualcomm implementation and ROCm device
if implementation == "nvidia" and execution_env == "Native":
continue # Nvidia implementation only supports execution through docker
content += f'{cur_space2}=== "{execution_env}"\n'
content += f"{cur_space3}###### {execution_env} Environment\n\n"
# ref to cm installation
content += f"{cur_space3}Please refer to the [installation page](site:inference/install/) to install CM for running the automated benchmark commands.\n\n"
test_query_count = get_test_query_count(
model, implementation, device.lower()
)
if (
device.lower() == "cuda"
and execution_env.lower() == "native"
):
content += f"\n{cur_space3}!!! tip\n\n"
content += f"{cur_space3} - It is advisable to use the commands in the Docker tab for CUDA. Run the below native command only if you are already on a CUDA setup with cuDNN and TensorRT installed.\n\n"
if (
"99.9" not in model
): # not showing docker command as it is already done for the 99% variant
if implementation == "neuralmagic":
content += (
f"{cur_space3}####### Run the Inference Server\n"
)
content += get_inference_server_run_cmd(
spaces + 16, implementation
)
if run_tips:
# tips regarding the running of nural magic
# server
content += f"\n{cur_space3}!!! tip\n\n"
content += f"{cur_space3} - Host and Port number of the server can be configured through `--host` and `--port` options. Otherwise, server will run on the default host `localhost` and port `8000`.\n\n"
setup_run_cmd = mlperf_inference_run_command(
spaces + 17,
model,
implementation,
framework.lower(),
category.lower(),
"Offline",
device.lower(),
"test",
test_query_count,
True,
skip_test_query_count,
scenarios,
code_version,
extra_variation_tags,
extra_input_string,
extra_docker_input_string,
)
common_info = get_common_info(
spaces + 16,
implementation,
model.lower()
)
if (
execution_env == "Native"
): # Native implementation steps through virtual environment
content += f"{cur_space3}####### Setup a virtual environment for Python\n"
content += get_venv_command(spaces + 16)
content += f"{cur_space3}####### Performance Estimation for Offline Scenario\n"
content += common_info
content += setup_run_cmd.replace(
"--docker ", "")
content += f"{cur_space3}The above command should do a test run of Offline scenario and record the estimated offline_target_qps.\n\n"
else: # Docker implementation steps
content += f"{cur_space3}####### Docker Container Build and Performance Estimation for Offline Scenario\n"
docker_info = get_docker_info(
spaces + 16,
model,
implementation,
device,
setup_tips,
)
content += common_info
content += docker_info
content += setup_run_cmd
if len(scenarios) == 1:
scenario_text = f"""the {scenarios[0]} scenario"""
else:
scenario_text = "each scenario" ""
content += f"{cur_space3}The above command should get you to an interactive shell inside the docker container and do a quick test run for the Offline scenario. Once inside the docker container please do the below commands to do the accuracy + performance runs for {scenario_text}.\n\n"
content += f"{cur_space3}<details>\n"
content += f"{cur_space3}<summary> Please click here to see more options for the docker launch </summary>\n\n"
content += f"{cur_space3}* `--docker_cm_repo=<Custom CM GitHub repo URL in username@repo format>`: to use a custom fork of cm4mlops repository inside the docker image\n\n"
content += f"{cur_space3}* `--docker_cm_repo_branch=<Custom CM GitHub repo Branch>`: to checkout a custom branch of the cloned cm4mlops repository inside the docker image\n\n"
content += f"{cur_space3}* `--docker_cache=no`: to not use docker cache during the image build\n"
if implementation.lower() == "nvidia":
content += f"{cur_space3}* `--gpu_name=<Name of the GPU>` : The GPUs with supported configs in CM are `orin`, `rtx_4090`, `rtx_a6000`, `rtx_6000_ada`, `l4`, `t4`and `a100`. For other GPUs, default configuration as per the GPU memory will be used.\n"
if device.lower() not in ["cuda"]:
content += f"{cur_space3}* `--docker_os=ubuntu`: ubuntu and rhel are supported. \n"
content += f"{cur_space3}* `--docker_os_version=20.04`: [20.04, 22.04] are supported for Ubuntu and [8, 9] for RHEL\n"
content += f"{cur_space3}</details>\n"
else:
content += f"{cur_space3} You can reuse the same environment as described for {model.split('.')[0]}.\n"
content += f"{cur_space3}###### Performance Estimation for Offline Scenario\n"
content += mlperf_inference_run_command(
spaces + 17,
model,
implementation,
framework.lower(),
category.lower(),
"Offline",
device.lower(),
"test",
test_query_count,
True,
skip_test_query_count,
scenarios,
code_version,
).replace("--docker ", "")
content += f"{cur_space3}The above command should do a test run of Offline scenario and record the estimated offline_target_qps.\n\n"
run_suffix = ""
run_suffix += f"{cur_space3}<details>\n"
run_suffix += f"{cur_space3}<summary> Please click here to see more options for the RUN command</summary>\n\n"
run_suffix += f"{cur_space3}* Use `--division=closed` to do a closed division submission which includes compliance runs\n\n"
run_suffix += f"{cur_space3}* Use `--rerun` to do a rerun even when a valid run exists\n"
if implementation.lower() == "nvidia":
run_suffix += f"{cur_space3}* `--gpu_name=<Name of the GPU>` : The GPUs with supported configs in CM are `orin`, `rtx_4090`, `rtx_a6000`, `rtx_6000_ada`, `l4`, `t4`and `a100`. For other GPUs, default configuration as per the GPU memory will be used.\n"
run_suffix += f"{cur_space3}</details>\n\n"
if (
"bert" in model.lower()
and framework.lower() == "deepsparse"
):
run_suffix += f"{cur_space3}<details>\n"
run_suffix += f"{cur_space3}<summary> Please click here to view available generic model stubs for bert deepsparse</summary>\n\n"
run_suffix += f"{cur_space3}* **obert-large-pruned95_quant-none-vnni:** zoo:nlp/question_answering/obert-large/pytorch/huggingface/squad/pruned95_quant-none-vnni\n\n"
run_suffix += f"{cur_space3}* **mobilebert-none-14layer_pruned50_quant-none-vnni:** zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/14layer_pruned50_quant-none-vnni\n\n"
run_suffix += f"{cur_space3}* **mobilebert-none-base_quant-none:** zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/base_quant-none\n\n"
run_suffix += f"{cur_space3}* **bert-base-pruned95_obs_quant-none:** zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned95_obs_quant-none\n\n"
run_suffix += f"{cur_space3}* **mobilebert-none-14layer_pruned50-none-vnni:** zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/14layer_pruned50-none-vnni\n\n"
run_suffix += f"{cur_space3}* **obert-base-pruned90-none:** zoo:nlp/question_answering/obert-base/pytorch/huggingface/squad/pruned90-none\n\n"
run_suffix += f"{cur_space3}* **obert-large-pruned97_quant-none:** zoo:nlp/question_answering/obert-large/pytorch/huggingface/squad/pruned97_quant-none\n\n"
run_suffix += f"{cur_space3}* **bert-base-pruned90-none:** zoo:nlp/question_answering/bert-base/pytorch/huggingface/squad/pruned90-none\n\n"
run_suffix += f"{cur_space3}* **bert-large-pruned80_quant-none-vnni:** zoo:nlp/question_answering/bert-large/pytorch/huggingface/squad/pruned80_quant-none-vnni\n\n"
run_suffix += f"{cur_space3}* **obert-large-pruned95-none-vnni:** zoo:nlp/question_answering/obert-large/pytorch/huggingface/squad/pruned95-none-vnni\n\n"
run_suffix += f"{cur_space3}* **obert-large-pruned97-none:** zoo:nlp/question_answering/obert-large/pytorch/huggingface/squad/pruned97-none\n\n"
run_suffix += f"{cur_space3}* **bert-large-base-none:** zoo:nlp/question_answering/bert-large/pytorch/huggingface/squad/base-none\n\n"
run_suffix += f"{cur_space3}* **obert-large-base-none:** zoo:nlp/question_answering/obert-large/pytorch/huggingface/squad/base-none\n\n"
run_suffix += f"{cur_space3}* **mobilebert-none-base-none:** zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/base-none\n"
run_suffix += f"{cur_space3}</details>\n"
for scenario in scenarios:
content += f"{cur_space3}=== \"{scenario}\"\n{cur_space4}###### {scenario}\n\n"
run_cmd = mlperf_inference_run_command(
spaces + 21,
model,
implementation,
framework.lower(),
category.lower(),
scenario,
device.lower(),
final_run_mode,
test_query_count,
False,
skip_test_query_count,
scenarios,
code_version,
extra_variation_tags,
extra_input_string,
)
content += run_cmd
# content += run_suffix
if len(scenarios) > 1:
content += f"{cur_space3}=== \"All Scenarios\"\n{cur_space4}###### All Scenarios\n\n"
run_cmd = mlperf_inference_run_command(
spaces + 21,
model,
implementation,
framework.lower(),
category.lower(),
"All Scenarios",
device.lower(),
final_run_mode,
test_query_count,
False,
skip_test_query_count,
scenarios,
code_version,
extra_variation_tags,
extra_input_string,
)
content += run_cmd
content += run_suffix
readme_prefix = get_readme_prefix(
spaces, model, implementation, extra_variation_tags
)
readme_suffix = get_readme_suffix(
spaces, model, implementation, extra_variation_tags
)
return readme_prefix + content + readme_suffix
def get_test_query_count(model, implementation, device, num_devices=1):
if model == "resnet50":
p_range = 1000
elif model in ["retinanet", "bert-99", "bert-99.9"]:
p_range = 100
else:
p_range = 10
if device == "cuda":
p_range *= 5
p_range *= num_devices
return p_range
def get_min_system_requirements(spaces, model, implementation, device):
model = model.lower()
min_sys_req_content = ""
min_sys_req_content += f"{spaces}<details>\n"
min_sys_req_content += f"{spaces}<summary>Please click here to see the minimum system requirements for running the benchmark</summary>\n\n"
# device memory
if device.lower() == "cuda" and (
implementation.lower() == "nvidia" or implementation.lower() == "reference"
):
if implementation.lower() == "nvidia":
if "dlrm" in model:
device_memory = "24GB"
elif "llama2-70b" in model or "mixtral" in model:
device_memory = "80GB"
elif "sdxl" in model or "gptj" in model:
device_memory = "16GB"
else:
device_memory = "8GB"
elif implementation.lower() == "reference":
if "dlrm" in model:
device_memory = "2x80GB"
elif "llama2-70b" in model:
device_memory = "8x80GB"
elif "mixtral" in model:
device_memory = "4x80GB"
elif "sdxl" in model:
device_memory = "24GB(fp32), 16GB(fp16)"
elif "gptj" in model:
device_memory = "80GB(fp32). 40GB(fp16)"
else:
device_memory = "8GB"
min_sys_req_content += f"{spaces}* **Device Memory**: {device_memory}\n\n"
# disk space
if "dlrm" in model:
disk_space = "500GB"
elif "llama2-70b" in model:
disk_space = "700GB"
elif "mixtral" in model:
disk_space = "100GB"
elif "retinanet" in model:
disk_space = "200GB"
else:
disk_space = "50GB"
min_sys_req_content += f"{spaces}* **Disk Space**: {disk_space}\n\n"
# System memory
if "dlrm" in model:
system_memory = "512GB"
min_sys_req_content += (
f"{spaces}* **System Memory(RAM+SWAP)**: {system_memory}\n\n"
)
min_sys_req_content += f"{spaces}</details>\n"
return min_sys_req_content
def get_inference_server_run_cmd(spaces, implementation):
indent = " " * spaces + " "
if implementation == "neuralmagic":
pre_space = " " * spaces
return f"""\n
{pre_space}```bash
{pre_space}cm run script --tags=run,vllm-server \\
{indent}--model=nm-testing/Llama-2-70b-chat-hf-FP8 \\
{indent}--vllm_model_name=nm-testing/Llama-2-70b-chat-hf-FP8 \\
{indent}--quiet
{pre_space}```\n"""
def get_venv_command(spaces):
pre_space = " " * spaces
return f"""\n
{pre_space}```bash
{pre_space}cm run script --tags=install,python-venv --name=mlperf
{pre_space}export CM_SCRIPT_EXTRA_CMD=\"--adr.python.name=mlperf\"
{pre_space}```\n"""
# contains run command information which is common to both docker and
# native runs
def get_common_info(spaces, implementation, model):
info = ""
pre_space = ""
for i in range(1, spaces):
pre_space = pre_space + " "
pre_space += " "
# pre_space = " "
info += f"\n{pre_space}!!! tip\n\n"
info += f"{pre_space} - Number of threads could be adjusted using `--threads=#`, where `#` is the desired number of threads. This option works only if the implementation in use supports threading.\n\n"
info += f"{pre_space} - Batch size could be adjusted using `--batch_size=#`, where `#` is the desired batch size. This option works only if the implementation in use is supporting the given batch size.\n\n"
info += f"{pre_space} - `_r4.1-dev` could also be given instead of `_r5.0-dev` if you want to run the benchmark with the MLPerf version being 4.1.\n\n"
if model == "rgat":
info += f"{pre_space} - Add `--env.CM_DATASET_IGBH_PATH=<Path to IGBH dataset>` if you have already downloaded the dataset. The path will be automatically mounted when using docker run.\n\n"
info += f"{pre_space} - Add `--env.CM_ML_MODEL_RGAT_CHECKPOINT_PATH=<Path to R-GAT model checkpoint>` if you have already downloaded the model. The path will be automatically mounted when using docker run.\n\n"
if implementation.lower() == "reference":
info += f"{pre_space} - Add `--adr.mlperf-implementation.tags=_branch.master,_repo.<CUSTOM_INFERENCE_REPO_LINK>` if you are modifying the official MLPerf Inference implementation in a custom fork.\n\n"
info += f"{pre_space} - Add `--adr.inference-src.tags=_repo.<CUSTOM_INFERENCE_REPO_LINK>` if you are modifying the model config accuracy script in the submission checker within a custom fork.\n\n"
info += f"{pre_space} - Add `--adr.inference-src.version=custom` if you are using the modified MLPerf Inference code or accuracy script on submission checker within a custom fork.\n\n"
return info
def get_docker_info(spaces, model, implementation,
device, setup_tips=True):
info = ""
pre_space = ""
for i in range(1, spaces):
pre_space = pre_space + " "
pre_space += " "
# pre_space = " "
if setup_tips:
info += f"\n{pre_space}!!! tip\n\n"
if model == "sdxl":
info += f"{pre_space} - `--env.CM_MLPERF_MODEL_SDXL_DOWNLOAD_TO_HOST=yes` option can be used to download the model on the host so that it can be reused across different container lanuches. \n\n"
elif "llama3" in model.lower():
info += f"{pre_space} - `--env.CM_MLPERF_MODEL_LLAMA3_DOWNLOAD_TO_HOST=yes` option can be used to download the model on the host so that it can be reused across different container lanuches. \n\n"
info += f"{pre_space} - `--env.CM_MLPERF_DATASET_LLAMA3_DOWNLOAD_TO_HOST=yes` option can be used to download the dataset on the host so that it can be reused across different container lanuches. \n\n"
if implementation.lower() == "nvidia":
info += f"{pre_space} - Default batch size is assigned based on [GPU memory](https://github.com/mlcommons/cm4mlops/blob/dd0c35856969c68945524d5c80414c615f5fe42c/script/app-mlperf-inference-nvidia/_cm.yaml#L1129) or the [specified GPU](https://github.com/mlcommons/cm4mlops/blob/dd0c35856969c68945524d5c80414c615f5fe42c/script/app-mlperf-inference-nvidia/_cm.yaml#L1370). Please click more option for *docker launch* or *run command* to see how to specify the GPU name.\n\n"
info += f"{pre_space} - When run with `--all_models=yes`, all the benchmark models of NVIDIA implementation can be executed within the same container.\n\n"
if "llama2" in model.lower():
info += f"{pre_space} - The dataset for NVIDIA's implementation of Llama2 is not publicly available. The user must fill [this](https://docs.google.com/forms/d/e/1FAIpQLSc_8VIvRmXM3I8KQaYnKf7gy27Z63BBoI_I1u02f4lw6rBp3g/viewform?pli=1&fbzx=-8842630989397184967) form and be verified as a MLCommons member to access the dataset.\n\n"
info += f"{pre_space} - `PATH_TO_PICKE_FILE` should be replaced with path to the downloaded pickle file.\n\n"
else:
if model == "sdxl":
info += f"\n{pre_space}!!! tip\n\n"
info += f"{pre_space} - `--env.CM_MLPERF_MODEL_SDXL_DOWNLOAD_TO_HOST=yes` option can be used to download the model on the host so that it can be reused across different container lanuches. \n\n"
# return empty string if nothing is filled inside the tip
if info == f"\n{pre_space}!!! tip\n\n":
return ""
return info
def get_readme_prefix(spaces, model, implementation, extra_variation_tags):
readme_prefix = ""
pre_space = " "
# for i in range(1,spaces):
# pre_space = pre_space + " "
# pre_space += " "
return readme_prefix
def get_readme_suffix(spaces, model, implementation, extra_variation_tags):
readme_suffix = ""
pre_space = ""
for i in range(1, spaces):
pre_space = pre_space + " "
pre_space += " "
if implementation == "reference" and not extra_variation_tags:
if not model.endswith("-99"):
model_base_name = model.replace("-99.9", "").replace("-99", "")
readme_suffix += f"{pre_space}* If you want to download the official MLPerf model and dataset for {model} you can follow [this README](get-{model_base_name}-data.md).\n"
if model == "resnet50":
readme_suffix += f"{pre_space}* Please see [mobilenets.md](mobilenets.md) for running mobilenet models for Image Classification."
return readme_suffix
def get_run_cmd_extra(
f_pre_space,
model,
implementation,
device,
scenario,
scenarios=[],
run_tips=True,
extra_input_string="",
):
extra_content = ""
f_pre_space += ""
if scenario == "Server" or (
scenario == "All Scenarios" and "Server" in scenarios
):
extra_content += f"{f_pre_space} * `<SERVER_TARGET_QPS>` must be determined manually. It is usually around 80% of the Offline QPS, but on some systems, it can drop below 50%. If a higher value is specified, the latency constraint will not be met, and the run will be considered invalid.\n"
if (
implementation == "reference"
and model in ["sdxl", "gptj-99", "gptj-99.9"]
and device in ["cuda", "rocm"]
and "precision" not in extra_input_string
):
extra_content += f"{f_pre_space} * `--precision=float16` can help run on GPUs with less RAM / gives better performance \n"
if (
implementation == "reference"
and model in ["sdxl", "gptj-99", "gptj-99.9"]
and device in ["cpu"]
and "precision" not in extra_input_string
):
extra_content += f"{f_pre_space} * `--precision=bfloat16` can give better performance \n"
if "gptj" in model and implementation == "reference":
extra_content += f"{f_pre_space} * `--beam-size=1` Beam size of 4 is mandatory for a closed division submission but reducing the beam size can help in running the model on GPUs with lower device memory\n"
if extra_content:
extra_content = f"{f_pre_space}!!! tip\n\n" + extra_content
if run_tips:
return extra_content
else:
return ""
@env.macro
def mlperf_inference_run_command(
spaces,
model,
implementation,
framework,
category,
scenario,
device="cpu",
execution_mode="test",
test_query_count="20",
docker=False,
skip_test_query_count=False,
scenarios=[],
code_version="r4.1-dev",
extra_variation_tags="",
extra_input_string="",
extra_docker_input_string="",
):
pre_space = ""
for i in range(1, spaces):
pre_space = pre_space + " "
f_pre_space = pre_space
pre_space += " "
if scenario == "All Scenarios":
scenario_variation_tag = ",_all-scenarios"
scenario_option = ""
else:
scenario_variation_tag = ""
scenario_option = f"\\\n{pre_space} --scenario={scenario}"
if scenario == "Server" or (
scenario == "All Scenarios" and "Server" in scenarios
):
scenario_option += (
f"\\\n{pre_space} --server_target_qps=<SERVER_TARGET_QPS>"
)
run_cmd_extra = get_run_cmd_extra(
f_pre_space,
model,
implementation,
device,
scenario,
scenarios,
True,
extra_input_string,
)
if docker:
docker_cmd_suffix = f" \\\n{pre_space} --docker --quiet"
if not skip_test_query_count:
docker_cmd_suffix += (
f" \\\n{pre_space} --test_query_count={test_query_count}"
)
if extra_docker_input_string != "" or extra_input_string != "":
docker_cmd_suffix += (
f" \\\n{pre_space} {extra_docker_input_string} {extra_input_string}"
)
if "bert" in model.lower() and framework == "deepsparse":
docker_cmd_suffix += f"\\\n{pre_space} --env.CM_MLPERF_NEURALMAGIC_MODEL_ZOO_STUB=zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/base_quant-none"
if "llama2-70b" in model.lower():
if implementation == "nvidia":
docker_cmd_suffix += f" \\\n{pre_space} --tp_size=2"
docker_cmd_suffix += f" \\\n{pre_space} --nvidia_llama2_dataset_file_path=<PATH_TO_PICKLE_FILE>"
elif implementation == "neuralmagic":
docker_cmd_suffix += (
f" \\\n{pre_space} --api_server=http://localhost:8000"
)
docker_cmd_suffix += f" \\\n{pre_space} --vllm_model_name=nm-testing/Llama-2-70b-chat-hf-FP8"
docker_cmd_suffix += f" \\\n{pre_space} --adr.mlperf-implementation.tags=_repo.https://github.com/neuralmagic/inference,_branch.vllm"
if "dlrm-v2" in model.lower() and implementation == "nvidia":
docker_cmd_suffix += f" \\\n{pre_space} --criteo_day23_raw_data_path=<PATH_TO_CRITEO_DAY23_RAW_DATA>"
if "short" in extra_variation_tags:
full_ds_needed_tag = ""
else:
full_ds_needed_tag = "_full,"
docker_setup_cmd = f"""\n
{f_pre_space}```bash
{f_pre_space}cm run script --tags=run-mlperf,inference,_find-performance,{full_ds_needed_tag}_{code_version}{scenario_variation_tag}{extra_variation_tags} \\
{pre_space} --model={model} \\
{pre_space} --implementation={implementation} \\
{pre_space} --framework={framework} \\
{pre_space} --category={category} {scenario_option} \\
{pre_space} --execution_mode=test \\
{pre_space} --device={device} {docker_cmd_suffix}
{f_pre_space}```\n"""
return docker_setup_cmd + run_cmd_extra
else:
cmd_suffix = f"\\\n{pre_space} --quiet {extra_input_string}"
if execution_mode == "test" and not skip_test_query_count:
cmd_suffix += f" \\\n {pre_space} --test_query_count={test_query_count}"
if "bert" in model.lower() and framework == "deepsparse":
cmd_suffix += f"\\\n{pre_space} --env.CM_MLPERF_NEURALMAGIC_MODEL_ZOO_STUB=zoo:nlp/question_answering/mobilebert-none/pytorch/huggingface/squad/base_quant-none"
if "llama2-70b" in model.lower():
if implementation == "nvidia":
cmd_suffix += f" \\\n{pre_space} --tp_size=<TP_SIZE>"
cmd_suffix += f" \\\n{pre_space} --nvidia_llama2_dataset_file_path=<PATH_TO_PICKE_FILE>"
elif implementation == "neuralmagic":
cmd_suffix += f" \\\n{pre_space} --api_server=http://localhost:8000"
cmd_suffix += f" \\\n{pre_space} --vllm_model_name=nm-testing/Llama-2-70b-chat-hf-FP8"
cmd_suffix += f" \\\n{pre_space} --adr.mlperf-implementation.tags=_repo.https://github.com/neuralmagic/inference,_branch.vllm"
if "dlrm-v2" in model and implementation == "nvidia":
cmd_suffix += f" \\\n{pre_space} --criteo_day23_raw_data_path=<PATH_TO_CRITEO_DAY23_RAW_DATA>"
run_cmd = f"""\n
{f_pre_space}```bash
{f_pre_space}cm run script --tags=run-mlperf,inference,_{code_version}{scenario_variation_tag}{extra_variation_tags} \\
{pre_space} --model={model} \\
{pre_space} --implementation={implementation} \\
{pre_space} --framework={framework} \\
{pre_space} --category={category} {scenario_option} \\
{pre_space} --execution_mode={execution_mode} \\
{pre_space} --device={device} {cmd_suffix}
{f_pre_space}```\n"""
return run_cmd + run_cmd_extra