-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile_test.py
194 lines (175 loc) · 6.17 KB
/
Snakefile_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import glob
# Define directory paths (modify as needed)
DATA_DIR = "data"
RESULTS_DIR = "results"
REFERENCE_DIR = "reference"
# Use `glob_wildcards` for robust sample name retrieval
SAMPLES = [
sample.split("_R1")[0]
for sample in sorted(glob.glob(f"{DATA_DIR}/{{sample}}_R1.fastq.gz"))
]
# Step 1: Quality Control (FastQC)
rule fastqc:
"""
Perform FastQC quality control on raw sequencing data (FASTQ files).
"""
input:
R1 = f"{DATA_DIR}/{{sample}}_R1.fastq.gz",
R2 = f"{DATA_DIR}/{{sample}}_R2.fastq.gz"
output:
R1_out = f"{RESULTS_DIR}/fastqc/{{sample}}_R1_fastqc.html",
R2_out = f"{RESULTS_DIR}/fastqc/{{sample}}_R2_fastqc.html"
shell:
"fastqc {input.R1} {input.R2} -o {RESULTS_DIR}/fastqc"
# Step 2: Alignment (BWA mem)
rule bwa_mem:
"""
Align sequencing reads to a reference genome using BWA mem.
"""
input:
R1 = f"{DATA_DIR}/{{sample}}_R1.fastq.gz",
R2 = f"{DATA_DIR}/{{sample}}_R2.fastq.gz",
ref = f"{REFERENCE_DIR}/reference.fasta"
output:
bam = f"{RESULTS_DIR}/aligned/{{sample}}_sorted.bam"
params:
rg = "@RG\\tID:{{sample}}\\tSM:{{sample}}\\tPL:ILLUMINA"
threads: 8
shell:
"""
bwa mem -t {threads} -R "{params.rg}" {input.ref} {input.R1} {input.R2} | \
samtools sort -o {output.bam}
"""
rule index_bam:
"""
Index the sorted BAM file for efficient access.
"""
input:
bam = f"{RESULTS_DIR}/aligned/{{sample}}_sorted.bam"
output:
bai = f"{RESULTS_DIR}/aligned/{{sample}}_sorted.bam.bai"
shell:
"samtools index {input.bam}"
# Step 3: Mark Duplicates and Base Quality Score Recalibration (BQSR)
rule mark_duplicates:
"""
Identify and remove duplicate reads in the BAM file.
"""
input:
bam = f"{RESULTS_DIR}/aligned/{{sample}}_sorted.bam"
output:
dedup_bam = f"{RESULTS_DIR}/gatk/{{sample}}_dedup.bam",
metrics = f"{RESULTS_DIR}/gatk/{{sample}}_metrics.txt"
shell:
"gatk MarkDuplicates -I {input.bam} -O {output.dedup_bam} -M {output.metrics}"
rule base_recalibration:
"""
Recalibrate base quality scores using GATK BaseRecalibrator and ApplyBQSR.
"""
input:
bam = f"{RESULTS_DIR}/gatk/{{sample}}_dedup.bam",
ref = f"{REFERENCE_DIR}/reference.fasta",
known_sites = f"{REFERENCE_DIR}/known_sites.vcf"
output:
recal_data = f"{RESULTS_DIR}/gatk/{{sample}}_recal_data.table",
bam_out = f"{RESULTS_DIR}/gatk/{{sample}}_recalibrated.bam"
shell:
"""
gatk BaseRecalibrator -I {input.bam} -R {input.ref} --known-sites {input.known_sites} -O {output.recal_data}
gatk ApplyBQSR -R {input.ref} -I {input.bam} --bqsr-recal-file {output.recal_data} -O {output.bam_out}
"""
# Step 4: CNV Calling with GATK
rule preprocess_intervals:
"""
Prepare a target interval list for CNV calling.
"""
input:
ref = f"{REFERENCE_DIR}/reference.fasta",
targets = f"{REFERENCE_DIR}/exome_targets.bed"
output:
intervals = f"{RESULTS_DIR}/gatk/intervals.interval_list"
shell:
"gatk PreprocessIntervals -R {input.ref} -L {input.targets} -imr OVERLAPPING_ONLY -O {output.intervals}"
rule denoise_counts:
"""
Denoise read counts using GATK DenoiseReadCounts.
"""
input:
counts = f"{DATA_DIR}/{{sample}}.counts.hdf5",
pon = f"{DATA_DIR}/pon.hdf5"
output:
standardized = f"{RESULTS_DIR}/gatk/{{sample}}.standardizedCR.tsv",
denoised = f"{RESULTS_DIR}/gatk/{{sample}}.denoisedCR.tsv"
shell:
"gatk DenoiseReadCounts -I {input.counts} --standardized-copy-ratios {output.standardized} --denoised-copy-ratios {output.denoised} --count-panel-of-normals {input.pon}"
rule call_segments:
"""
Call CNV segments using GATK CallCopyRatioSegments.
"""
input:
denoised = f"{RESULTS_DIR}/gatk/{{sample}}.denoisedCR.tsv"
output:
segments = f"{RESULTS_DIR}/segments/{{sample}}_segments.seg"
shell:
"gatk CallCopyRatioSegments --denoised-copy-ratios {input.denoised} --output {output.segments}"
# Step 5: CNV Calling with CNVkit
rule cnvkit_coverage:
"""
Calculate coverage for the sample using CNVkit.
"""
input:
bam = f"{RESULTS_DIR}/gatk/{{sample}}_recalibrated.bam",
targets = f"{REFERENCE_DIR}/exome_targets.bed"
output:
cnn = f"{RESULTS_DIR}/cnvkit/{{sample}}.cnn"
shell:
"cnvkit.py coverage {input.bam} {input.targets} -o {output.cnn}"
rule cnvkit_reference:
"""
Create a reference copy number profile using CNVkit.
"""
input:
normal_cnns = expand(f"{RESULTS_DIR}/cnvkit/{{normal}}.cnn", normal=["normal_1", "normal_2"]),
ref_fasta = f"{REFERENCE_DIR}/reference.fasta"
output:
ref_cnn = f"{RESULTS_DIR}/cnvkit/my_reference.cnn"
shell:
"cnvkit.py reference {input.normal_cnns} -f {input.ref_fasta} -o {output.ref_cnn}"
rule cnvkit_fix:
"""
Correct for GC bias and other artifacts using CNVkit.
"""
input:
sample_cnn = f"{RESULTS_DIR}/cnvkit/{{sample}}.cnn",
ref_cnn = f"{RESULTS_DIR}/cnvkit/my_reference.cnn",
targets = f"{REFERENCE_DIR}/exome_targets.bed"
output:
cnr = f"{RESULTS_DIR}/cnvkit/{{sample}}.cnr"
shell:
"cnvkit.py fix {input.sample_cnn} {input.ref_cnn} {input.targets} -o {output.cnr}"
rule cnvkit_segment:
"""
Segment the data to identify CNV regions using CNVkit.
"""
input:
cnr = f"{RESULTS_DIR}/cnvkit/{{sample}}.cnr"
output:
cns = f"{RESULTS_DIR}/cnvkit/{{sample}}.cns"
shell:
"cnvkit.py segment {input.cnr} -o {output.cns}"
rule cnvkit_visualize:
"""
Visualize CNV regions using CNVkit.
"""
input:
cnr = f"{RESULTS_DIR}/cnvkit/{{sample}}.cnr",
cns = f"{RESULTS_DIR}/cnvkit/{{sample}}.cns"
output:
scatter = f"{RESULTS_DIR}/cnvkit/{{sample}}_scatter.png",
diagram = f"{RESULTS_DIR}/cnvkit/{{sample}}_diagram.png"
shell:
"""
cnvkit.py scatter {input.cnr} -s {input.cns} -o {output.scatter}
cnvkit.py diagram {input.cns} -o {output.diagram}
"""