-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdecompression.py
181 lines (153 loc) · 5.35 KB
/
decompression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
Note to user: This file, while functional, is not fully differentiable in
PyTorch and is not easily moved to and from the gpu. For updated version use
the source copde in modules and updated DiffJPEG module.
"""
# Standard libraries
import itertools
import numpy as np
# PyTorch
import torch
# Local
import utils
def y_dequantize(image, factor=1):
""" Dequantize Y channel
Inputs:
image(tensor): batch x height x width
factor(float): compression factor
Outputs:
image(tensor): batch x height x width
"""
return image * (utils.y_table * factor)
def c_dequantize(image, factor=1):
""" Dequantize CbCr channel
Inputs:
image(tensor): batch x height x width
factor(float): compression factor
Outputs:
image(tensor): batch x height x width
"""
return image * (utils.c_table * factor)
def idct_8x8_ref(image):
""" Reference Inverse Discrete Cosine Transformation
Input:
dcp(tensor): batch x height x width
Output:
image(tensor): batch x height x width
"""
alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
alpha = np.outer(alpha, alpha)
image = image * alpha
result = np.zeros((8, 8), dtype=np.float32)
for u, v in itertools.product(range(8), range(8)):
value = 0
for x, y in itertools.product(range(8), range(8)):
value += image[x, y] * np.cos((2 * u + 1) * x * np.pi / 16) * np.cos(
(2 * v + 1) * y * np.pi / 16)
result[u, v] = value
return result * 0.25 + 128
def idct_8x8(image):
""" Inverse discrete Cosine Transformation
Input:
dcp(tensor): batch x height x width
Output:
image(tensor): batch x height x width
"""
alpha = np.array([1. / np.sqrt(2)] + [1] * 7)
alpha = np.outer(alpha, alpha)
image = image * alpha
tensor = np.zeros((8, 8, 8, 8), dtype=np.float32)
for x, y, u, v in itertools.product(range(8), repeat=4):
tensor[x, y, u, v] = np.cos((2 * u + 1) * x * np.pi / 16) * np.cos(
(2 * v + 1) * y * np.pi / 16)
result = 0.25 * torch.tensordot(image, tensor, dims=2) + 128
# result = torch.from_numpy(result)
result.view(image.shape)
return result
def block_merging(patches, height, width):
""" Merge pathces into image
Inputs:
patches(tensor) batch x height*width/64, height x width
height(int)
width(int)
Output:
image(tensor): batch x height x width
"""
k = 8
batch_size = patches.shape[0]
image_reshaped = patches.view(batch_size, height//k, width//k, k, k)
image_transposed = image_reshaped.permute(0, 1, 3, 2, 4)
return image_transposed.contiguous().view(batch_size, height, width)
def chroma_upsampling(y, cb, cr):
""" Upsample chroma layers
Input:
y(tensor): y channel image
cb(tensor): cb channel
cr(tensor): cr channel
Ouput:
image(tensor): batch x height x width x 3
"""
def repeat(x, k=2):
height, width = x.shape[1:3]
x = x.unsqueeze(-1)
x = x.repeat(1, 1, k, k)
x = x.view(-1, height * k, width * k)
return x
cb = repeat(cb)
cr = repeat(cr)
print(y.shape, cb.shape, cr.shape)
return torch.cat([y.unsqueeze(3), cb.unsqueeze(3), cr.unsqueeze(3)], dim=3)
def ycbcr_to_rgb(image):
""" Converts YCbCr image to RGB
Input:
image(tensor): batch x height x width x 3
Outpput:
result(tensor): batch x 3 x height x width
"""
matrix = np.array(
[[298.082, 0, 408.583], [298.082, -100.291, -208.120],
[298.082, 516.412, 0]],
dtype=np.float32).T / 256
shift = [-222.921, 135.576, -276.836]
result = torch.tensordot(image, matrix, dims=1) + shift
#result = torch.from_numpy(result)
result.view(image.shape)
return result.permute(0, 3, 1, 2)
def ycbcr_to_rgb_jpeg(image):
""" Converts YCbCr image to RGB JPEG
Input:
image(tensor): batch x height x width x 3
Outpput:
result(tensor): batch x 3 x height x width
"""
matrix = np.array(
[[1., 0., 1.402], [1, -0.344136, -0.714136], [1, 1.772, 0]],
dtype=np.float32).T
shift = [0, -128, -128]
result = torch.tensordot(image + shift, matrix, dims=1)
#result = torch.from_numpy(result)
result.view(image.shape)
return result.permute(0, 3, 1, 2)
def decompress_jpeg(y, cb, cr, height, width, rounding=torch.round, factor=1):
""" Full JPEG decompression algortihm
Input:
compressed(dict(tensor)): batch x h*w/64 x 8 x 8
rounding(function): rounding function to use
factor(float): Compression factor
Ouput:
image(tensor): batch x 3 x height x width
"""
upresults = {}
components = {'y': y, 'cb': cb, 'cr': cr}
for k in components.keys():
comp = c_dequantize(components[k], factor) if k in (
'cb', 'cr') else y_dequantize(components[k], factor)
comp = idct_8x8(comp)
comp = block_merging(comp, int(height/2), int(width/2)
) if k in ('cb', 'cr') else block_merging(comp, height, width)
upresults[k] = comp
image = chroma_upsampling(upresults['y'], upresults['cb'], upresults['cr'])
image = ycbcr_to_rgb_jpeg(image)
image = torch.min(255*torch.ones_like(image),
torch.max(torch.zeros_like(image), image))
return image/255