-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathproject_setup.py
290 lines (250 loc) · 8.62 KB
/
project_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Copyright 2023 Iguazio
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import mlrun
from src.calls_analysis.db_management import create_tables
from src.common import ProjectSecrets
def setup(
project: mlrun.projects.MlrunProject,
) -> mlrun.projects.MlrunProject:
"""
Creating the project for the demo. This function is expected to call automatically when calling the function
`mlrun.get_or_create_project`.
:param project: The project to set up.
:returns: A fully prepared project for this demo.
"""
# Unpack secrets from environment variables:
openai_key = os.environ[ProjectSecrets.OPENAI_API_KEY]
openai_base = os.environ[ProjectSecrets.OPENAI_API_BASE]
mysql_url = os.environ[ProjectSecrets.MYSQL_URL]
# Unpack parameters:
source = project.get_param(key="source")
default_image = project.get_param(key="default_image", default=None)
build_image = project.get_param(key="build_image", default=False)
gpus = project.get_param(key="gpus", default=0)
node_name = project.get_param(key="node_name", default=None)
node_selector = project.get_param(key="node_selector", default=None)
# Set the project git source:
if source:
print(f"Project Source: {source}")
project.set_source(source=source, pull_at_runtime=True)
# Set default image:
if default_image:
project.set_default_image(default_image)
# Build the image:
if build_image:
print("Building default image for the demo:")
_build_image(project=project, with_gpu=gpus)
# Set the secrets:
_set_secrets(
project=project,
openai_key=openai_key,
openai_base=openai_base,
mysql_url=mysql_url,
)
# Refresh MLRun hub to the most up-to-date version:
mlrun.get_run_db().get_hub_catalog(source_name="default", force_refresh=True)
# Set the functions:
_set_calls_generation_functions(project=project, node_name=node_name)
_set_calls_analysis_functions(project=project, gpus=gpus, node_name=node_name, node_selector=node_selector)
# Set the workflows:
_set_workflows(project=project)
# Create the DB tables:
create_tables()
# Save and return the project:
project.save()
return project
def _build_image(project: mlrun.projects.MlrunProject, with_gpu: bool):
config = {
"base_image": "mlrun/mlrun-gpu" if with_gpu else "mlrun/mlrun",
"torch_index": "https://download.pytorch.org/whl/cu118" if with_gpu else "https://download.pytorch.org/whl/cpu",
"onnx_package": "onnxruntime-gpu" if with_gpu else "onnxruntime"
}
# Define commands in logical groups while maintaining order
system_commands = [
# Update apt-get to install ffmpeg (support audio file formats):
"apt-get update -y && apt-get install ffmpeg -y"
]
infrastructure_requirements = [
"pip install transformers==4.44.1",
f"pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url {config['torch_index']}"
]
huggingface_requirements = [
"pip install bitsandbytes==0.41.1 accelerate==0.24.1 datasets==2.14.6 peft==0.5.0 optimum==1.13.2"
]
gpu_specific_requirements = [
"pip install auto-gptq==0.4.2 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/"
] if with_gpu else []
other_requirements = [
"pip install mlrun langchain==0.2.17 openai==1.58.1 langchain_community==0.2.19 pydub==0.25.1 streamlit==1.28.0 st-annotated-text==4.0.1 spacy==3.7.2 librosa==0.10.1 presidio-anonymizer==2.2.34 presidio-analyzer==2.2.34 nltk==3.8.1 flair==0.13.0 htbuilder==0.6.2",
"python -m spacy download en_core_web_lg",
"pip install -U SQLAlchemy",
"pip uninstall -y onnxruntime-gpu onnxruntime",
f"pip install {config['onnx_package']}",
]
# Combine commands in the required order
commands = (
system_commands +
infrastructure_requirements +
huggingface_requirements +
gpu_specific_requirements +
other_requirements
)
# Build the image
assert project.build_image(
base_image=config["base_image"],
commands=commands,
set_as_default=True,
)
def _set_secrets(
project: mlrun.projects.MlrunProject,
openai_key: str,
openai_base: str,
mysql_url: str,
):
# Must have secrets:
project.set_secrets(
secrets={
ProjectSecrets.OPENAI_API_KEY: openai_key,
ProjectSecrets.OPENAI_API_BASE: openai_base,
ProjectSecrets.MYSQL_URL: mysql_url,
}
)
def _set_function(
project: mlrun.projects.MlrunProject,
func: str,
name: str,
kind: str,
gpus: int = 0,
node_name: str = None,
with_repo: bool = None,
image: str = None,
node_selector: dict = None,
):
# Set the given function:
if with_repo is None:
with_repo = not func.startswith("hub://")
mlrun_function = project.set_function(
func=func, name=name, kind=kind, with_repo=with_repo, image=image,
)
# Configure GPUs according to the given kind:
if gpus >= 1:
if node_selector:
mlrun_function.with_node_selection(node_selector=node_selector)
if kind == "mpijob":
# 1 GPU for each rank:
mlrun_function.with_limits(gpus=1)
mlrun_function.spec.replicas = gpus
else:
# All GPUs for the single job:
mlrun_function.with_limits(gpus=gpus)
# Set the node selection:
elif node_name:
mlrun_function.with_node_selection(node_name=node_name)
# Save:
mlrun_function.save()
def _set_calls_generation_functions(
project: mlrun.projects.MlrunProject,
node_name: str = None,
):
# Client and agent data generator
_set_function(
project=project,
func="hub://structured_data_generator",
name="structured-data-generator",
kind="job",
node_name=node_name,
)
# Conversation generator:
_set_function(
project=project,
func="./src/calls_generation/conversations_generator.py",
name="conversations-generator",
kind="job",
node_name=node_name,
)
# Text to audio generator:
_set_function(
project=project,
func="hub://text_to_audio_generator",
name="text-to-audio-generator",
kind="job",
with_repo=False,
)
def _set_calls_analysis_functions(
project: mlrun.projects.MlrunProject,
gpus: int,
node_name: str = None,
node_selector: dict = None,
):
# DB management:
_set_function(
project=project,
func="./src/calls_analysis/db_management.py",
name="db-management",
kind="job",
node_name=node_name,
)
# Speech diarization:
_set_function(
project=project,
func="hub://silero_vad",
name="silero-vad",
kind="job",
node_name=node_name,
)
# Transcription:
_set_function(
project=project,
func="hub://transcribe",
name="transcription",
kind="mpijob" if gpus > 1 else "job",
gpus=gpus,
node_name=node_name,
node_selector=node_selector,
)
# PII recognition:
_set_function(
project=project,
func="hub://pii_recognizer",
name="pii-recognition",
kind="job",
node_name=node_name,
)
# Question answering:
_set_function(
project=project,
func="hub://question_answering",
name="question-answering",
kind="job",
gpus=gpus,
node_name=node_name,
node_selector=node_selector,
)
# Postprocessing:
_set_function(
project=project,
func="./src/calls_analysis/postprocessing.py",
name="postprocessing",
with_repo=False,
kind="job",
node_name=node_name,
)
def _set_workflows(project: mlrun.projects.MlrunProject):
project.set_workflow(
name="calls-generation", workflow_path="./src/workflows/calls_generation.py"
)
project.set_workflow(
name="calls-analysis", workflow_path="./src/workflows/calls_analysis.py"
)