-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcharge_pump_analysis.m
287 lines (239 loc) · 11.3 KB
/
charge_pump_analysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
%% charge_pump_analysis.m
%
% --------------------- Begin GPL Statement ---------------------
% Copyright 2015 Marcin M. Morys
%
% This file is part of charge-pump-analysis.
%
% charge-pump-analysis is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% charge-pump-analysis is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with charge-pump-analysis. If not, see <http://www.gnu.org/licenses/>.
% --------------------- End GPL Statement ---------------------
%
% This is the main executable script of the charge-pump-analysis
% application. Enter all desired inputs by modifying the user_inputs.m file
% and then run this script.
%% Load user inputs given in user_inputs.m file
user_inputs;
%% Create cell array of diode and charge pump parameters to iterate over
parameter_list = [cp_parameter_list,diode_parameter_list]; % Cell array containing diode and charge pump parameters as strings, taken from user_inputs.m file
num_parameters = length(parameter_list);
% Create N-dimensional numerical array of parameters, each dimension
% containing all the values to iteratie over for each parameter
parameters = cell(1,num_parameters);
num_diode_parameters = length(diode_parameter_list);
for ind=1:num_parameters
eval(['parameters{ind} = ',parameter_list{ind},';']);
eval(['pind.',parameter_list{ind},' = ',num2str(ind),';']);
end
%% Create array of the dimensions of parameters
parameters_size = zeros(size(parameters));
for ind=1:length(parameters_size)
parameters_size(ind) = length(parameters{ind});
end
%% Create arrays for storing results
Vdc_array = zeros(parameters_size);
Vripple_array = Vdc_array;
Zcp_array = Vdc_array;
Zin_array = Vdc_array;
Impedance_error = Vdc_array;
unconverged_sims = [];
tic;
mydatestr=sprintf('%d-',fix(clock));
mydatestr = mydatestr(1:end-1);
num_sims = prod(parameters_size);
%% Iterate over every combination of parameters
for ind = 1:num_sims
% Determine current combination of parameters to run
v = ind2sub_array(parameters_size,ind);
% Store inital Rin and Lin
Rin_current = Rin(v(pind.Rin));
Lin_current = Lin(v(pind.Lin));
% Create diode model for current simulation
if DIODE_FROM_PARAMETERS
diode_name = create_diode_model(file_open_attemts_max,diode_path,Is(v(pind.Is)),Rs(v(pind.Rs)),Cjo(v(pind.Cjo)),Nstages(v(pind.N)),BV(v(pind.BV)),IBV(v(pind.IBV)),Eg(v(pind.Eg)),Vj(v(pind.Vj)),Xti(v(pind.Xti)),M(v(pind.M)),type{v(pind.type)});
else
diode_name = diode_names{v(pind.diode_names)};
end
% Insert diode name into diode subcircuit
nameind = strfind(subckt_diode,'DIODE_NAME');
if ~isempty(nameind)
subckt_diode_name = [subckt_diode(1:nameind-1),diode_name,subckt_diode(nameind+10:end)];
subckt_string = [subckt_header,subckt_diode_name,subckt_parasitics,subckt_dmodel,subckt_dpath,subckt_end];
else
subckt_string = [subckt_header,subckt_diode_name,subckt_parasitics,subckt_end];
end
% Set Lout based on f to minimize output ripple
if MATCH_CoutESL_TO_Cout
Lout = 1/((2*pi*f(v(pind.f)))^2*Cout(v(pind.Cout)));
end
% Create plot axes
if (SHOW_PLOTS || PROMPT_IF_DC_REACHED)
if (NEW_FIG_FOR_EACH_SIM || ind==1)
myfig = figure;
time_axes = subplot(2,1,1);
freq_axes = subplot(2,1,2);
else
hold(time_axes,'off')
hold(freq_axes,'off')
end
end
% Initialize adaptive impedance matching iteration variables
adaptive_run_count = 0;
REFL_THRESH_REACHED = false;
Vdc_previous = -Inf;
T_fund = 1/f(v(pind.f));
run_time = periods_initial*T_fund;
% Run adaptive impedance simulation
while( ( ITERATIVE_MATCHING && adaptive_run_count<max_adaptive_runs && (~REFL_THRESH_REACHED || FORCE_CONTINUE_AFTER_CONVERGED) ) || (~ITERATIVE_MATCHING && adaptive_run_count==0))
% Compute source generator voltage from Pin and Rin
Vg = Pin2Vg(Pin(v(pind.Pin)),Rin_current);
% Function to create Spice netlist and run simulation, output raw
% file name using subckt for diode model
[netlist,Vin_node,Vout_node,VL_node] = create_dicksoncp_netlist(file_open_attemts_max,netlist_name,...
subckt_string,run_time,Vg,f(v(pind.f)),Nstages(v(pind.Nstages)),...
Rin_current,Lin_current,Rout(v(pind.Rout)),...
Cout(v(pind.Cout)),Cout_ESR(v(pind.Cout_ESR)),...
Cout_ESL(v(pind.Cout_ESL)),Cout_RL(v(pind.Cout_RL)),...
C(v(pind.C)),C_ESR(v(pind.C_ESR)),C_ESL(v(pind.C_ESL)),...
C_RL(v(pind.C_RL)));
% Run LTSpice simulation using a system command
rawfile = [netlist_name,'.raw'];
if exist(rawfile,'file')==2
delete(rawfile);
end
system(['scad3 -run -b ',netlist]);
while(exist(rawfile,'file')==0)
system(['scad3 -run -b ',netlist]);
end
% Collect time domain voltage data for input and output nodes
[time,Vout,Vinc,Vrefl] = interpret_raw_data( rawfile, Vin_node, Vout_node, VL_node);
% Resample voltage data to have a constant sampling rate, since
% Spice uses variable step sizes during simulation
[t,Vout] = even_resample(time,Vout,interp_method);
Vinc = interp1(time,Vinc,t,interp_method);
Vrefl = interp1(time,Vrefl,t,interp_method);
Ts = t(2)-t(1);
% Number of samples per fundamental input period
Tn_fund = round(T_fund/Ts);
% Compute ouput DC voltage
[Vdc,Tnstart_Vdc,Vripple,DC_REACHED] = steady_state_detect(Vout,slope_change_thresh,min_dc_estim_length,Tn_fund);
Tstart_Vdc = Tnstart_Vdc*Ts;
% Plot current output voltage data
if SHOW_PLOTS || (~DC_REACHED && PROMPT_IF_DC_REACHED)
plot(time_axes,t,Vout,'Color',color_choice(adaptive_run_count+1),'LineStyle','-');
hold(time_axes,'on')
plot(time_axes,[Tstart_Vdc,t(end)],[Vdc,Vdc],'k');
plot(time_axes,[Tstart_Vdc,time(end)],[Vdc+Vripple,Vdc+Vripple],'k:');
plot(time_axes,[Tstart_Vdc,time(end)],[Vdc-Vripple,Vdc-Vripple],'k:');
xlabel(time_axes,'Time (s)')
ylabel(time_axes,'DC Voltage (V)')
end
% Prompt if DC reached
if PROMPT_IF_DC_REACHED
drawnow;
choice = questdlg('Has DC state been reached?','DC Reached?','Yes, stop sim','No, continue sim','Yes, stop sim');
if strcmp(choice,'Yes, stop sim')
DC_REACHED = true;
end
end
% If DC has not been reached, rerun simulation with more time
if ~DC_REACHED
run_time = run_time*2;
if run_time > max_spice_sim_periods*T_fund;
run_time = max_spice_sim_periods*T_fund;
continue
elseif run_time == max_spice_sim_periods*T_fund;
unconverged_sims = [unconverged_sims,ind];
else
continue
end
end
% Store DC voltage and ripple
Vdc_array(ind) = Vdc;
Vripple_array(ind) = Vripple;
% Compute input impedance
Vinc_steady_state = Vinc(Tnstart_Vdc:end);
Vrefl_steady_state = Vrefl(Tnstart_Vdc:end);
if mod(Vinc_steady_state,2)
Vinc_steady_state = Vinc_steady_state(1:end-1);
Vrefl_steady_state = Vrefl_steady_state(1:end-1);
end
% Use Goertzel algorithm to compute charge pump reflection
% coefficient at input frequency
[freqs,S11_rel,Gamma,Vinc_f0_goertzel] = transient_impednace_calc(Ts,Vinc_steady_state,Vrefl_steady_state,f(v(pind.f)),COMPUTE_REFL_AT_ALL_FREQ);
% Compute charge pump impedance from reflection coefficient
Zcp_with_inductor = Rin_current*(1+Gamma)/(1-Gamma);
% Compute return loss at fundamental frequency
S11_f0 = 20*log10(abs(Gamma));
% Compute error in impedance estimate from Goertzel algorithm by
% comparing the measured input voltage with the actual input
% voltage magnitude and phase
Vinc_f0_actual_amp = Vg/2;
Vinc_f0_actual_phase = rem(t(Tnstart_Vdc),T_fund)/T_fund*2*pi-pi/2;
Vinc_f0_actual = Vinc_f0_actual_amp*exp(1i*Vinc_f0_actual_phase);
Impedance_error(ind) = abs(Vinc_f0_goertzel-Vinc_f0_actual)/abs(Vinc_f0_actual);
if Impedance_error(ind) > 0.01
warning(['Error in impedance calculation greater than 1% for ind=',num2str(ind)])
end
% Store source and charge pump impedances from current run
Zin_array(ind) = Rin_current+1i*2*pi*f(v(pind.f))*Lin_current;
Zcp_array(ind) = Zcp_with_inductor-1i*2*pi*f(v(pind.f))*Lin_current;
% Update source resistance/inductance to match computed charge pump
% impedance
if ITERATIVE_MATCHING
Rin_match = real(Zcp_with_inductor);
if Rin_match > 0
Rin_current = Rin_match;
else
Rin_current = 1;
end
Lin_match = -imag(Zcp_with_inductor)/(2*pi*f(v(pind.f)));
if (Lin_current+Lin_match)>0
Lin_current = Lin_current+Lin_match;
else
Lin_current = 0;
end
if S11_f0 < reflection_threshold
REFL_THRESH_REACHED = true;
end
end
% Plot generator to charge pump return loss
if SHOW_PLOTS
plot(freq_axes,freqs*1e-9,S11_rel,'Color',color_choice(adaptive_run_count+1));
hold(freq_axes,'on')
plot(freq_axes,f(v(pind.f))*1e-9,S11_f0,'Color',color_choice(adaptive_run_count+1),'Marker','x');
xlim(freq_axes,[0,10*f(v(pind.f))*1e-9])
xlabel(freq_axes,'Frequency (GHz)')
ylabel(freq_axes,'Return Loss (dB)')
drawnow
end
% Increment the run counter
adaptive_run_count = adaptive_run_count+1;
end
disp(['Input impedance: ',num2str(Zcp_array(ind))])
disp(['Matching inductance: ',num2str(Lin_current)])
% Display progress and save data every 10th simulation run
if mod(ind,10)==0
disp(['Diode ',num2str(diode_ind),'/',num2str(num_diodes),'. Percent complete: ',num2str(ind/numel(Vdc_array)*100),'%. Time remaining: ',datestr(tcurr*(num_sims-ind)/(ind*86400),'DD:HH:MM:SS'),', Time elapsed: ',datestr(tcurr/86400,'DD:HH:MM:SS')]);
if STORE_BACKUP
save(['backup-',mydatestr,'.mat'],'Vdc_array','Vripple_array','Zcp_array','unconverged_sims','parameters');
end
end
end
if STORE_BACKUP
save(['backup-',mydatestr,'.mat'],'Vdc_array','Vripple_array','Zcp_array','unconverged_sims','parameters');
end
% Delete raw file
[temp,namepart,extpart] = fileparts(rawfile);
delete(rawfile);
delete([namepart,'.op',extpart])