-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodels.py
1170 lines (864 loc) · 26.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Urrios 2016: multicellular memory + Macia 2016
import numpy as np
def merge_N(x,y):
x1 = np.append(x, np.zeros([x.shape[0], y.shape[1]]), axis=1)
y1 = np.append(np.zeros([y.shape[0], x.shape[1]]), y, axis=1)
return np.append(x1,y1,axis=0)
# a model of inverter
def not_cell(state, params):
L_X, x, y, N_X, N_Y = state
delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x = params
# presume that the molecules are degraded in the same strain as they are produced
N_Y = N_X
f = gamma_L_X * (y ** n_y)/(1 + (theta_L_X*y)**n_y )
dL_X_dt = N_X * (f - delta_L * L_X)
dx_dt = N_X * (eta_x * (1/(1+ (omega_x*L_X)**m_x))) - N_Y * (delta_x * x) - rho_x * x
return dL_X_dt, dx_dt
def not_cell_stochastic(state, params, Omega):
L_X, x, y, N_X, N_Y = state
delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x = params
# presume that the molecules are degraded in the same strain as they are produced
N_Y = N_X
#Omega *= N_X # reaction space volume is proportional to the number of cells
gamma_L_X *= Omega
eta_x *= Omega
theta_L_X /= Omega
omega_x /= Omega
p = [0]*5
p[0] = N_X * gamma_L_X * (y ** n_y)/(1 + (theta_L_X*y)**n_y ) / Omega
#p[0] = gamma_L_X * (y ** n_y)/(1 + (theta_L_X*y)**n_y ) / Omega # N_x already included in reaction space volume (Omega)
p[1] = N_X * delta_L * L_X
#p[1] = delta_L * L_X # N_x already included in reaction space volume (Omega)
p[2] = N_X * (eta_x * (1/(1+ (omega_x*L_X)**m_x)))
#p[2] = (eta_x * (1/(1+ (omega_x*L_X)**m_x))) # N_x already included in reaction space volume (Omega)
p[3] = N_Y * (delta_x * x)
#p[3] = (delta_x * x) # N_y already included in reaction space volume (Omega)
p[4] = rho_x * x
return p
# a model of driver
def yes_cell(state, params):
x, y, N_X, N_Y = state
gamma_x, n_y, theta_x, delta_x, rho_x = params
# presume that the molecules are degraded in the same strain as they are produced
N_Y = N_X
dx_dt = N_X * gamma_x * (y ** n_y)/(1 + (theta_x*y)**n_y ) - N_Y * (delta_x * x) - rho_x * x
return dx_dt
def yes_cell_stochastic(state, params, Omega):
x, y, N_X, N_Y = state
gamma_x, n_y, theta_x, delta_x, rho_x = params
# presume that the molecules are degraded in the same strain as they are produced
N_Y = N_X
#Omega *= N_X # reaction space volume is proportional to the number of cells
gamma_x *= Omega
theta_x /= Omega
p = [0]*3
p[0] = N_X * gamma_x * (y ** n_y)/(1 + (theta_x*y)**n_y )
#p[0] = gamma_x * (y ** n_y)/(1 + (theta_x*y)**n_y ) # N_x already included in reaction space volume (Omega)
p[1] = N_Y * (delta_x * x)
#p[1] = delta_x * x # N_y already included in reaction space volume (Omega)
p[2] = rho_x * x
return p
def population(state, params):
N = state
r = params
dN = r * N * (1 - N)
return dN
def population_stochastic(state, params, Omega):
N = state
r = params
p = [0]*2
p[0] = r * N
p[1] = r * Omega * N**2
return p
def toggle_model(state, T, params):
L_A, L_B, a, b, N_A, N_B = state
state_A = L_A, a, b, N_A, N_B
state_B = L_B, b, a, N_B, N_A
delta_L, gamma_A, gamma_B, n_a, n_b, theta_A, theta_B, eta_a, eta_b, omega_a, omega_b, m_a, m_b, delta_a, delta_b, rho_a, rho_b, r_A, r_B = params
params_A = delta_L, gamma_A, n_b, theta_A, eta_a, omega_a, m_a, delta_a, rho_a
params_B = delta_L, gamma_B, n_a, theta_B, eta_b, omega_b, m_b, delta_b, rho_b
dL_A_dt, da_dt = not_cell(state_A, params_A)
dL_B_dt, db_dt = not_cell(state_B, params_B)
dN_A_dt = population(N_A, r_A)
dN_B_dt = population(N_B, r_B)
return np.array([dL_A_dt, dL_B_dt, da_dt, db_dt, dN_A_dt, dN_B_dt])
def toggle_model_stochastic(state, params, Omega):
L_A, L_B, a, b, N_A, N_B = state
state_A = L_A, a, b, N_A, N_B
state_B = L_B, b, a, N_B, N_A
delta_L, gamma_A, gamma_B, n_a, n_b, theta_A, theta_B, eta_a, eta_b, omega_a, omega_b, m_a, m_b, delta_a, delta_b, rho_a, rho_b, r_A, r_B = params
params_A = delta_L, gamma_A, n_b, theta_A, eta_a, omega_a, m_a, delta_a, rho_a
params_B = delta_L, gamma_B, n_a, theta_B, eta_b, omega_b, m_b, delta_b, rho_b
p1 = not_cell_stochastic(state_A, params_A, Omega)
p2 = not_cell_stochastic(state_B, params_B, Omega)
#p3 = population_stochastic(N_A, r_A, Omega)
#p4 = population_stochastic(N_B, r_B, Omega)
return p1 + p2
def toggle_generate_stoichiometry():
#
# x axis ... species # Y = L_A, L_B, a, b, N_A, N_B
# y axis ... reactions
#
idx_L_A, idx_L_B, idx_a, idx_b, idx_N_A, idx_N_B = 0,1,2,3,4,5
N = np.zeros((6, 10))
# reaction 0
r = 0
# 0 --> L_A
N[idx_L_A, r] = 1
# reaction 1
r = 1
# L_A --> 0
N[idx_L_A, r] = -1
# reaction 2
r = 2
# 0 --> a
N[idx_a, r] = 1
# reaction 3
r = 3
# a --> 0
N[idx_a, r] = -1
# reaction 4
r = 4
# a --> 0
N[idx_a, r] = -1
# reaction 5
r = 5
# 0 --> L_B
N[idx_L_B, r] = 1
# reaction 6
r = 6
# L_B --> 0
N[idx_L_B, r] = -1
# reaction 7
r = 7
# 0 --> b
N[idx_b, r] = 1
# reaction 8
r = 8
# b --> 0
N[idx_b, r] = -1
# reaction 9
r = 9
# b --> 0
N[idx_b, r] = -1
return N
# L_A ... intermediate
# a ... out
# b ... in
# N_A ... number of cells
def not_cell_wrapper(state, params):
L_A, a, b, N_A = state
state_A = L_A, a, b, N_A, N_A
params_A = params
return not_cell(state_A, params_A)
# a ... out
# b ... in
# N_A ... number of cells
def yes_cell_wrapper(state, params):
a, b, N_A = state
state_A = a, b, N_A, N_A
params_A = params
return yes_cell(state_A, params_A)
def not_model(state, T, params):
L_A, a, b, N_A = state
delta_L, gamma_L_A, n_b, theta_L_A, eta_a, omega_a, m_a, delta_a, delta_b, rho_a, rho_b, r_A = params
state_not = L_A, a, b, N_A
params_not = delta_L, gamma_L_A, n_b, theta_L_A, eta_a, omega_a, m_a, delta_a, rho_a
dL_A_dt, da_dt = not_cell_wrapper(state_not, params_not)
db_dt = 0#- N_A * delta_b * b - rho_b * b
dN_A_dt = population(N_A, r_A)
return np.array([dL_A_dt, da_dt, db_dt, dN_A_dt])
def yes_model(state, T, params):
a, b, N_A = state
gamma_a, n_b, theta_a, delta_a, delta_b, rho_a, rho_b, r_A = params
state_yes = a, b, N_A
params_yes = gamma_a, n_b, theta_a, delta_a, rho_a
da_dt = yes_cell_wrapper(state_yes, params_yes)
db_dt = 0 #- N_A * delta_b * b - rho_b * b
dN_A_dt = population(N_A, r_A)
return np.array([da_dt, db_dt, dN_A_dt])
def MUX_4_1_model(state, T, params):
delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x, gamma_x, theta_x, r_X = params
params_yes = gamma_x, n_y, theta_x, delta_x, rho_x
params_not = delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x
I0, I1, I2, I3, S0, S1 = state[:6]
I0_out, I1_out, I2_out, I3_out = state[6:10]
L_I0_I0, L_I1_S0, L_I1_I1, L_I2_S1, L_I2_I2, L_I3_S0, L_I3_S1, L_I3_I3, L_I0, L_I1, L_I2, L_I3 = state[10:22]
N_I0_S0, N_I0_S1, N_I0_I0, N_I1_S0, N_I1_S1, N_I1_I1, N_I2_S0, N_I2_S1, N_I2_I2, N_I3_S0, N_I3_S1, N_I3_I3, N_I0, N_I1, N_I2, N_I3 = state[22:38]
out = state[38]
"""
I0
"""
dI0_out = 0
# yes S0: I0_S0
state_yes_I0_S0 = I0_out, S0, N_I0_S0
dI0_out += yes_cell_wrapper(state_yes_I0_S0, params_yes)
dN_I0_S0 = population(N_I0_S0, r_X)
# yes S1: I0_S1
state_yes_I0_S1 = I0_out, S1, N_I0_S1
dI0_out += yes_cell_wrapper(state_yes_I0_S1, params_yes)
dN_I0_S1 = population(N_I0_S1, r_X)
# not I0: I0_I0
state_not_I0_I0 = L_I0_I0, I0_out, I0, N_I0_I0
dL_I0_I0, dd = not_cell_wrapper(state_not_I0_I0, params_not)
dI0_out += dd
dN_I0_I0 = population(N_I0_I0, r_X)
"""
I1
"""
dI1_out = 0
# not S0: I1_S0
state_not_I1_S0 = L_I1_S0, I1_out, S0, N_I1_S0
dL_I1_S0, dd = not_cell_wrapper(state_not_I1_S0, params_not)
dI1_out += dd
dN_I1_S0 = population(N_I1_S0, r_X)
# yes S1: I1_S1
state_yes_I1_S1 = I1_out, S1, N_I1_S1
dI1_out += yes_cell_wrapper(state_yes_I1_S1, params_yes)
dN_I1_S1 = population(N_I1_S1, r_X)
# not I1: I1_I1
state_not_I1_I1 = L_I1_I1, I1_out, I1, N_I1_I1
dL_I1_I1, dd = not_cell_wrapper(state_not_I1_I1, params_not)
dI1_out += dd
dN_I1_I1 = population(N_I1_I1, r_X)
"""
I2
"""
dI2_out = 0
# yes S0: I2_S0
state_yes_I2_S0 = I2_out, S0, N_I2_S0
dI2_out += yes_cell_wrapper(state_yes_I2_S0, params_yes)
dN_I2_S0 = population(N_I2_S0, r_X)
# not S1: I2_S1
state_not_I2_S1 = L_I2_S1, I2_out, S1, N_I2_S1
dL_I2_S1, dd = not_cell_wrapper(state_not_I2_S1, params_not)
dI2_out += dd
dN_I2_S1 = population(N_I2_S1, r_X)
# not I2: I2_I2
state_not_I2_I2 = L_I2_I2, I2_out, I2, N_I2_I2
dL_I2_I2, dd = not_cell_wrapper(state_not_I2_I2, params_not)
dI2_out += dd
dN_I2_I2 = population(N_I2_I2, r_X)
"""
I3
"""
dI3_out = 0
# not S0: I3_S0
state_not_I3_S0 = L_I3_S0, I3_out, S0, N_I3_S0
dL_I3_S0, dd = not_cell_wrapper(state_not_I3_S0, params_not)
dI3_out += dd
dN_I3_S0 = population(N_I3_S0, r_X)
# not S1: I3_S1
state_not_I3_S1 = L_I3_S1, I3_out, S1, N_I3_S1
dL_I3_S1, dd = not_cell_wrapper(state_not_I3_S1, params_not)
dI3_out += dd
dN_I3_S1 = population(N_I3_S1, r_X)
# not I3: I3_I3
state_not_I3_I3 = L_I3_I3, I3_out, I3, N_I3_I3
dL_I3_I3, dd = not_cell_wrapper(state_not_I3_I3, params_not)
dI3_out += dd
dN_I3_I3 = population(N_I3_I3, r_X)
"""
out
"""
dout = 0
# not I0: I0
state_not_I0 = L_I0, out, I0_out, N_I0
dL_I0, dd = not_cell_wrapper(state_not_I0, params_not)
dout += dd
dN_I0 = population(N_I0, r_X)
# not I1: I1
state_not_I1 = L_I1, out, I1_out, N_I1
dL_I1, dd = not_cell_wrapper(state_not_I1, params_not)
dout += dd
dN_I1 = population(N_I1, r_X)
# not I2: I2
state_not_I2 = L_I2, out, I2_out, N_I2
dL_I2, dd = not_cell_wrapper(state_not_I2, params_not)
dout += dd
dN_I2 = population(N_I2, r_X)
# not I3: I3
state_not_I3 = L_I3, out, I3_out, N_I3
dL_I3, dd = not_cell_wrapper(state_not_I3, params_not)
dout += dd
dN_I3 = population(N_I3, r_X)
dI0, dI1, dI2, dI3, dS0, dS1 = 0, 0, 0, 0, 0, 0
dstate = np.array([dI0, dI1, dI2, dI3, dS0, dS1,
dI0_out, dI1_out, dI2_out, dI3_out,
dL_I0_I0, dL_I1_S0, dL_I1_I1, dL_I2_S1, dL_I2_I2, dL_I3_S0, dL_I3_S1, dL_I3_I3, dL_I0, dL_I1, dL_I2, dL_I3,
dN_I0_S0, dN_I0_S1, dN_I0_I0, dN_I1_S0, dN_I1_S1, dN_I1_I1, dN_I2_S0, dN_I2_S1, dN_I2_I2, dN_I3_S0, dN_I3_S1, dN_I3_I3, dN_I0, dN_I1, dN_I2, dN_I3,
dout])
return dstate
def MUX_4_1_generate_stoichiometry():
"""
I0, I1, I2, I3, S0, S1 = state[:6]
I0_out, I1_out, I2_out, I3_out = state[6:10]
L_I0_I0, L_I1_S0, L_I1_I1, L_I2_S1, L_I2_I2, L_I3_S0, L_I3_S1, L_I3_I3, L_I0, L_I1, L_I2, L_I3 = state[10:22]
N_I0_S0, N_I0_S1, N_I0_I0, N_I1_S0, N_I1_S1, N_I1_I1, N_I2_S0, N_I2_S1, N_I2_I2, N_I3_S0, N_I3_S1, N_I3_I3, N_I0, N_I1, N_I2, N_I3 = state[22:38]
out = state[38]
"""
#I0, I1, I2, I3, S0, S1 = range(6)
I0_out, I1_out, I2_out, I3_out = range(6,10)
L_I0_I0, L_I1_S0, L_I1_I1, L_I2_S1, L_I2_I2, L_I3_S0, L_I3_S1, L_I3_I3, L_I0, L_I1, L_I2, L_I3 = range(10,22)
#N_I0_S0, N_I0_S1, N_I0_I0, N_I1_S0, N_I1_S1, N_I1_I1, N_I2_S0, N_I2_S1, N_I2_I2, N_I3_S0, N_I3_S1, N_I3_I3, N_I0, N_I1, N_I2, N_I3 = range(22,38)
out = 38
#
# x axis ... species
# y axis ... reactions
#
N = np.zeros((39, 72))
"""
# yes S0: I0_S0
"""
r = 0
# reaction 0
# 0 --> I0_out
N[I0_out, r] = 1
r += 1
# reaction 1
# I0_out --> 0
N[I0_out, r] = -1
r += 1
# reaction 2
# I0_out --> 0
N[I0_out, r] = -1
"""
# yes S1: I0_S1
"""
r += 1
# reaction 3
# 0 --> I0_out
N[I0_out, r] = 1
r += 1
# reaction 4
# I0_out --> 0
N[I0_out, r] = -1
r += 1
# reaction 5
# I0_out --> 0
N[I0_out, r] = -1
"""
# not I0: I0_I0
"""
r += 1
# reaction 6
# 0 --> L_I0_I0
N[L_I0_I0, r] = 1
r += 1
# reaction 7
# L_I0_I0 --> 0
N[L_I0_I0, r] = -1
r += 1
# reaction 8
# 0 --> I0_out
N[I0_out, r] = 1
r += 1
# reaction 9
# I0_out --> 0
N[I0_out, r] = -1
r += 1
# reaction 10
# I0_out --> 0
N[I0_out, r] = -1
"""
# not S0: I1_S0
"""
r += 1
# reaction 11
# 0 --> L_I1_S0
N[L_I1_S0, r] = 1
r += 1
# reaction 12
# L_I1_S0 --> 0
N[L_I1_S0, r] = -1
r += 1
# reaction 13
# 0 --> I1_out
N[I1_out, r] = 1
r += 1
# reaction 14
# I1_out --> 0
N[I1_out, r] = -1
r += 1
# reaction 15
# I1_out --> 0
N[I1_out, r] = -1
"""
# yes S1: I1_S1
"""
r += 1
# reaction 16
# 0 --> I1_out
N[I1_out, r] = 1
r += 1
# reaction 17
# I1_out --> 0
N[I1_out, r] = -1
r += 1
# reaction 18
# I1_out --> 0
N[I1_out, r] = -1
"""
# not I1: I1_I1
"""
r += 1
# reaction 19
# 0 --> L_I1_I1
N[L_I1_I1, r] = 1
r += 1
# reaction 20
# L_I1_I1 --> 0
N[L_I1_I1, r] = -1
r += 1
# reaction 21
# 0 --> I1_out
N[I1_out, r] = 1
r += 1
# reaction 22
# I1_out --> 0
N[I1_out, r] = -1
r += 1
# reaction 23
# I1_out --> 0
N[I1_out, r] = -1
"""
# yes S0: I2_S0
"""
r += 1
# reaction 24
# 0 --> I2_out
N[I2_out, r] = 1
r += 1
# reaction 25
# I2_out --> 0
N[I2_out, r] = -1
r += 1
# reaction 26
# I2_out --> 0
N[I2_out, r] = -1
"""
# not S1: I2_S1
"""
r += 1
# reaction 27
# 0 --> L_I2_S1
N[L_I2_S1, r] = 1
r += 1
# reaction 28
# L_I2_S1 --> 0
N[L_I2_S1, r] = -1
r += 1
# reaction 29
# 0 --> I2_out
N[I2_out, r] = 1
r += 1
# reaction 30
# I2_out --> 0
N[I2_out, r] = -1
r += 1
# reaction 31
# I2_out --> 0
N[I2_out, r] = -1
"""
# not I2: I2_I2
"""
r += 1
# reaction 32
# 0 --> L_I2_I2
N[L_I2_I2, r] = 1
r += 1
# reaction 33
# L_I2_I2 --> 0
N[L_I2_I2, r] = -1
r += 1
# reaction 34
# 0 --> I2_out
N[I2_out, r] = 1
r += 1
# reaction 35
# I2_out --> 0
N[I2_out, r] = -1
r += 1
# reaction 36
# I2_out --> 0
N[I2_out, r] = -1
"""
# not S0: I3_S0
"""
r += 1
# reaction 37
# 0 --> L_I3_S0
N[L_I3_S0, r] = 1
r += 1
# reaction 38
# 0 --> L_I3_S0
N[L_I3_S0, r] = -1
r += 1
# reaction 39
# 0 --> I3_out
N[I3_out, r] = 1
r += 1
# reaction 40
# I3_out --> 0
N[I3_out, r] = -1
r += 1
# reaction 41
# I3_out --> 0
N[I3_out, r] = -1
"""
# not S1: I3_S1
"""
r += 1
# reaction 42
# 0 --> L_I3_S1
N[L_I3_S1, r] = 1
r += 1
# reaction 43
# L_I3_S1 --> 0
N[L_I3_S1, r] = -1
r += 1
# reaction 44
# 0 --> I3_out
N[L_I3_S1, r] = 1
r += 1
# reaction 45
# I3_out --> 0
N[I3_out, r] = -1
r += 1
# reaction 46
# I3_out --> 0
N[I3_out, r] = -1
"""
# not I3: I3_I3
"""
r += 1
# reaction 47
# 0 --> L_I3_I3
N[L_I3_I3, r] = 1
r += 1
# reaction 48
# L_I3_I3 --> 0
N[L_I3_I3, r] = -1
r += 1
# reaction 49
# 0 --> I3_out
N[I3_out, r] = 1
r += 1
# reaction 50
# I3_out --> 0
N[I3_out, r] = -1
r += 1
# reaction 51
# I3_out --> 0
N[I3_out, r] = -1
"""
# not I0: I0
"""
r += 1
# reaction 52
# 0 --> L_I0
N[L_I0, r] = 1
r += 1
# reaction 53
# L_I0 --> 0
N[L_I0, r] = -1
r += 1
# reaction 54
# 0 --> out
N[out, r] = 1
r += 1
# reaction 55
# out --> 0
N[out, r] = -1
r += 1
# reaction 56
# out --> 0
N[out, r] = -1
"""
# not I1: I1
"""
r += 1
# reaction 57
# 0 --> L_I1
N[L_I1, r] = 1
r += 1
# reaction 58
# L_I1 --> 0
N[L_I1, r] = -1
r += 1
# reaction 59
# 0 --> out
N[out, r] = 1
r += 1
# reaction 60
# out --> 0
N[out, r] = -1
r += 1
# reaction 61
# out --> 0
N[out, r] = -1
"""
# not I2: I2
"""
r += 1
# reaction 62
# 0 --> L_I2
N[L_I2, r] = 1
r += 1
# reaction 63
# L_I2 --> 0
N[L_I2, r] = -1
r += 1
# reaction 64
# 0 --> out
N[out, r] = 1
r += 1
# reaction 65
# out --> 0
N[out, r] = -1
r += 1
# reaction 66
# out --> 0
N[out, r] = -1
"""
# not I3: I3
"""
r += 1
# reaction 67
# 0 --> L_I3
N[L_I3, r] = 1
r += 1
# reaction 68
# L_I3 --> 0
N[L_I3, r] = -1
r += 1
# reaction 69
# 0 --> out
N[out, r] = 1
r += 1
# reaction 70
# out --> 0
N[out, r] = -1
r += 1
# reaction 71
# out --> 0
N[out, r] = -1
return N
def MUX_4_1_model_stochastic(state, params, Omega):
delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x, gamma_x, theta_x, r_X = params
params_yes = gamma_x, n_y, theta_x, delta_x, rho_x
params_not = delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, rho_x
I0, I1, I2, I3, S0, S1 = state[:6]
I0_out, I1_out, I2_out, I3_out = state[6:10]
L_I0_I0, L_I1_S0, L_I1_I1, L_I2_S1, L_I2_I2, L_I3_S0, L_I3_S1, L_I3_I3, L_I0, L_I1, L_I2, L_I3 = state[10:22]
N_I0_S0, N_I0_S1, N_I0_I0, N_I1_S0, N_I1_S1, N_I1_I1, N_I2_S0, N_I2_S1, N_I2_I2, N_I3_S0, N_I3_S1, N_I3_I3, N_I0, N_I1, N_I2, N_I3 = state[22:38]
out = state[38]
"""
I0
"""
# yes S0: I0_S0
state_yes_I0_S0 = I0_out, S0, N_I0_S0, N_I0_S0
p_I0_S0 = yes_cell_stochastic(state_yes_I0_S0, params_yes, Omega)
# yes S1: I0_S1
state_yes_I0_S1 = I0_out, S1, N_I0_S1, N_I0_S1
p_I0_S1 = yes_cell_stochastic(state_yes_I0_S1, params_yes, Omega)
# not I0: I0_I0
state_not_I0_I0 = L_I0_I0, I0_out, I0, N_I0_I0, N_I0_I0
p_I0_I0 = not_cell_stochastic(state_not_I0_I0, params_not, Omega)
"""
I1
"""
# not S0: I1_S0
state_not_I1_S0 = L_I1_S0, I1_out, S0, N_I1_S0, N_I1_S0
p_I1_S0 = not_cell_stochastic(state_not_I1_S0, params_not, Omega)
# yes S1: I1_S1
state_yes_I1_S1 = I1_out, S1, N_I1_S1, N_I1_S1
p_I1_S1 = yes_cell_stochastic(state_yes_I1_S1, params_yes, Omega)
# not I1: I1_I1
state_not_I1_I1 = L_I1_I1, I1_out, I1, N_I1_I1, N_I1_I1
p_I1_I1 = not_cell_stochastic(state_not_I1_I1, params_not, Omega)
"""
I2
"""
# yes S0: I2_S0
state_yes_I2_S0 = I2_out, S0, N_I2_S0, N_I2_S0
p_I2_S0 = yes_cell_stochastic(state_yes_I2_S0, params_yes, Omega)
# not S1: I2_S1
state_not_I2_S1 = L_I2_S1, I2_out, S1, N_I2_S1, N_I2_S1
p_I2_S1= not_cell_stochastic(state_not_I2_S1, params_not, Omega)
# not I2: I2_I2
state_not_I2_I2 = L_I2_I2, I2_out, I2, N_I2_I2, N_I2_I2
p_I2_I2 = not_cell_stochastic(state_not_I2_I2, params_not, Omega)
"""
I3
"""
# not S0: I3_S0
state_not_I3_S0 = L_I3_S0, I3_out, S0, N_I3_S0, N_I3_S0
p_I3_S0 = not_cell_stochastic(state_not_I3_S0, params_not, Omega)
# not S1: I3_S1
state_not_I3_S1 = L_I3_S1, I3_out, S1, N_I3_S1, N_I3_S1
p_I3_S1 = not_cell_stochastic(state_not_I3_S1, params_not, Omega)
# not I3: I3_I3
state_not_I3_I3 = L_I3_I3, I3_out, I3, N_I3_I3, N_I3_I3
p_I3_I3 = not_cell_stochastic(state_not_I3_I3, params_not, Omega)
"""
out
"""
# not I0: I0
state_not_I0 = L_I0, out, I0_out, N_I0, N_I0
p_I0 = not_cell_stochastic(state_not_I0, params_not, Omega)
# not I1: I1
state_not_I1 = L_I1, out, I1_out, N_I1, N_I1
p_I1 = not_cell_stochastic(state_not_I1, params_not, Omega)
# not I2: I2
state_not_I2 = L_I2, out, I2_out, N_I2, N_I2
p_I2 = not_cell_stochastic(state_not_I2, params_not, Omega)
# not I3: I3
state_not_I3 = L_I3, out, I3_out, N_I3, N_I3
p_I3 = not_cell_stochastic(state_not_I3, params_not, Omega)
return (p_I0_S0 + p_I0_S1 + p_I0_I0 +
p_I1_S0 + p_I1_S1 + p_I1_I1 +
p_I2_S0 + p_I2_S1 + p_I2_I2 +
p_I3_S0 + p_I3_S1 + p_I3_I3 +
p_I0 + p_I1 + p_I2 + p_I3)
def CLB_generate_stoichiometry():
N_toggle_IO = toggle_generate_stoichiometry()
N_toggle_I1 = toggle_generate_stoichiometry()
N_toggle_I2 = toggle_generate_stoichiometry()
N_toggle_I3 = toggle_generate_stoichiometry()
N_mux = MUX_4_1_generate_stoichiometry()
# skip first four rows (I0, I1, I2, I3)
N_mux = N_mux[4:,:]
return merge_N(merge_N(merge_N(merge_N(N_toggle_IO, N_toggle_I1), N_toggle_I2), N_toggle_I3), N_mux)
def CLB_model(state, T, params):
delta_L, gamma_L_X, n_y, theta_L_X, eta_x, omega_x, m_x, delta_x, delta_y, rho_x, rho_y, gamma_x, theta_x, r_X, r_Y, rho_I0_a, rho_I0_b, rho_I1_a, rho_I1_b, rho_I2_a, rho_I2_b, rho_I3_a, rho_I3_b = params
"""
latches
"""