This folder contains some preprocess scripts for additional processing of your dataset before using Data-Juicer.
This tool will split raw dataset to different sub-datasets by language information.
python tools/preprocess/dataset_split_by_language.py \
--src_dir <src_dir> \
--target_dir <target_dir> \
--suffixes <suffixes> \
--text_key <text_key> \
--num_proc <num_proc>
# get help
python tools/preprocess/dataset_split_by_language.py --help
src_dir
: you just need to set this argument to the path which stores your datasets.target_dir
: result directory to store the converted jsonl files.text_key
: key name of field that stores sample text. Default: textsuffixes
: the suffix of files that will be read. Default: Nonenum_proc
(optional): number of process workers. Default it's 1.
This tool is used to convert the raw arXiv data downloaded from S3 into the jsonl format which is friendly to Data-Juicer.
python tools/preprocess/raw_arxiv_to_jsonl.py \
--arxiv_src_dir <arxiv_src_dir> \
--target_dir <target_dir> \
--temp_dir <temp_dir> \
--num_proc <num_proc>
# get help
python tools/preprocess/raw_arxiv_to_jsonl.py --help
arxiv_src_dir
: if you download raw arXiv data as Redpajama did, you will get a directory src which includes thousands of tar files whose filenames are likearXiv_src_yymm_xxx.tar
. You just need to set this argument to the path of this dir.target_dir
: result directory to store the converted jsonl files.temp_dir
: directory to store intermediate files, and they will be removed once the conversion ends. Default it's./tmp
num_proc
(optional): number of process workers. Default it's 1.
Note:
-
For downloading process, please refer to here.
-
Before you downloading, converting or processing, you might make sure that your drive space is large enough to store the raw data (over 3TB), converted data (over 3TB), at least processed data (about 500-600GB), and even more cache data during processing.
Use raw_stackexchange_to_jsonl.py
to convert raw stack_exchange data.
This tool is used for converting the raw Stack Exchange data downloaded from from Archive to several jsonl files.
python tools/preprocess/raw_arxiv_stackexchange_to_jsonl.py \
--src_dir <src_dir> \
--target_dir <target_dir> \
--topk <topk> \
--num_proc <num_proc> \
# get help
python tools/preprocess/raw_stackexchange_to_jsonl.py --help
src_dir
: if you download raw Stack Exchange data as Redpajama did, you will get a directory src which includes hundreds of 7z files whose filenames are like*.*.com.7z
. You need to unzip these files and rename the POSTs.xml to the corresponding compressed package name and place it in that dir. For more details, please refer to here.target_dir
: result directory to store the converted jsonl files.topk
(optional): select the topk sites with the most content. Default it's 28.num_proc
(optional): number of process workers. Default it's 1.
Note: Before you downloading, converting or processing, you might make sure that your drive space is large enough to store the raw data (over 100GB), converted data (over 100GB)
Use raw_alpaca_cot_merge_add_meta.py
to convert raw Alpaca-CoT data.
This tool is used for converting the raw Alpaca-Cot data downloaded from HuggingFace to jsonl files.
python tools/preprocess/raw_alpaca_cot_merge_add_meta.py \
--src_dir <src_dir> \
--target_dir <target_dir> \
--num_proc <num_proc>
# get help
python tools/preprocess/raw_alpaca_cot_merge_add_meta.py --help
src_dir
: you just need to set this argument to the path which stores Alpaca_CoT data.target_dir
: result directory to store the converted jsonl files.num_proc
(optional): number of process workers. Default it's 1.
This tool is used to reformat csv or tsv files which may have Nan values in some field to several jsonl files.
python tools/preprocess/reformat_csv_nan_value.py \
--src_dir <src_dir> \
--target_dir <target_dir> \
--suffixes <suffixes> \
--is_tsv <is_tsv> \
--keep_default_na <keep_default_na> \
--num_proc <num_proc>
# get help
python tools/preprocess/reformat_csv_nan_value.py --help
src_dir
: you just need to set this argument to the path which stores filenames are like*.csv
or*.tsv
.target_dir
: result directory to store the converted jsonl files.suffixes
: what kind of suffixes you want to process, multi-suffixes args like--suffixes '.tsv', '.csv'
.is_tsv
: if true, sep will be set to'\t'
, otherwize','
as default.keep_default_na
: if False, strings will be parsed as NaN, otherwise only the default NaN values are used for parsing.num_proc
(optional): number of process workers. Default it's 1.
This tool is used to reformat jsonl files which may have Nan values in some field.
python tools/preprocess/reformat_jsonl_nan_value.py \
--src_dir <src_dir> \
--target_dir <target_dir> \
--num_proc <num_proc>
# get help
python tools/preprocess/reformat_jsonl_nan_value.py --help
src_dir
: you just need to set this argument to the path which stores filenames are like*.jsonl
.target_dir
: result directory to store the converted jsonl files.num_proc
(optional): number of process workers. Default it's 1.
In some jsonl files, different samples may have different meta fields, and even the data types in the same meta field may be different, which will cause failure to read the dataset using HuggingFace Dataset. This tool is used to serialize all meta fields except text_key
in these jsonl files into strings to facilitate subsequent Data-juicer processing. After the dataset is processed, it usually needs to be deserialized using deserialize_meta.py.
python tools/preprocess/serialize_meta.py \
--src_dir <src_dir> \
--target_dir <target_dir> \
--text_key <text_key> \
--serialized_key <serialized_key> \
--num_proc <num_proc>
# get help
python tools/preprocess/serialize_meta.py --help
src_dir
: path to store jsonl files.target_dir
: path to save the converted jsonl files.text_key
: the key corresponding to the field that will not be serialized. Defaul it's 'text'.serialized_key
: the key corresponding to the field that the serialized info saved. Default it's 'source_info'.num_proc
(optional): number of process workers. Default it's 1.