-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathgrabcut.py
406 lines (334 loc) · 16 KB
/
grabcut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#!/usr/bin/env python
'''
===============================================================================
Interactive Image Segmentation using GrabCut algorithm.
This sample shows interactive image segmentation using grabcut algorithm.
USAGE:
python grabcut.py <filename>
README FIRST:
Two windows will show up, one for input and one for output.
At first, in input window, draw a rectangle around the object using
mouse right button. Then press 'n' to segment the object (once or a few times)
For any finer touch-ups, you can press any of the keys below and draw lines on
the areas you want. Then again press 'n' for updating the output.
Key '0' - To select areas of sure background
Key '1' - To select areas of sure foreground
Key '2' - To select areas of probable background
Key '3' - To select areas of probable foreground
Key 'n' - To update the segmentation
Key 'r' - To reset the setup
Key 's' - To save the results
===============================================================================
'''
import sys
import numpy as np
import cv2 as cv
import igraph as ig
from GMM import GaussianMixture
BLUE = [255, 0, 0] # rectangle color
RED = [0, 0, 255] # PR BG
GREEN = [0, 255, 0] # PR FG
BLACK = [0, 0, 0] # sure BG
WHITE = [255, 255, 255] # sure FG
DRAW_BG = {'color': BLACK, 'val': 0}
DRAW_FG = {'color': WHITE, 'val': 1}
DRAW_PR_FG = {'color': GREEN, 'val': 3}
DRAW_PR_BG = {'color': RED, 'val': 2}
# setting up flags
rect = (0, 0, 1, 1)
drawing = False # flag for drawing curves
rectangle = False # flag for drawing rect
rect_over = False # flag to check if rect drawn
rect_or_mask = 100 # flag for selecting rect or mask mode
value = DRAW_FG # drawing initialized to FG
thickness = 3 # brush thickness
skip_learn_GMMs = False # whether to skip learning GMM parameters
def onmouse(event, x, y, flags, param):
global img, img2, drawing, value, mask, rectangle, rect, rect_or_mask, ix, iy, rect_over, skip_learn_GMMs
# Draw Rectangle
if event == cv.EVENT_RBUTTONDOWN:
rectangle = True
ix, iy = x, y
elif event == cv.EVENT_MOUSEMOVE:
if rectangle == True:
img = img2.copy()
cv.rectangle(img, (ix, iy), (x, y), BLUE, 2)
rect = (min(ix, x), min(iy, y), abs(ix-x), abs(iy-y))
rect_or_mask = 0
elif event == cv.EVENT_RBUTTONUP:
rectangle = False
rect_over = True
cv.rectangle(img, (ix, iy), (x, y), BLUE, 2)
rect = (min(ix, x), min(iy, y), abs(ix-x), abs(iy-y))
rect_or_mask = 0
print(" Now press the key 'n' a few times until no further change \n")
# draw touchup curves
if event == cv.EVENT_LBUTTONDOWN:
if rect_over == False:
print("first draw rectangle \n")
else:
drawing = True
cv.circle(img, (x, y), thickness, value['color'], -1)
cv.circle(mask, (x, y), thickness, value['val'], -1)
elif event == cv.EVENT_MOUSEMOVE:
if drawing == True:
cv.circle(img, (x, y), thickness, value['color'], -1)
cv.circle(mask, (x, y), thickness, value['val'], -1)
elif event == cv.EVENT_LBUTTONUP:
if drawing == True:
drawing = False
cv.circle(img, (x, y), thickness, value['color'], -1)
cv.circle(mask, (x, y), thickness, value['val'], -1)
skip_learn_GMMs = True
class GrabCut:
def __init__(self, img, mask, rect=None, gmm_components=5):
self.img = np.asarray(img, dtype=np.float64)
self.rows, self.cols, _ = img.shape
self.mask = mask
if rect is not None:
self.mask[rect[1]:rect[1] + rect[3],
rect[0]:rect[0] + rect[2]] = DRAW_PR_FG['val']
self.classify_pixels()
# Best number of GMM components K suggested in paper
self.gmm_components = gmm_components
self.gamma = 50 # Best gamma suggested in paper formula (5)
self.beta = 0
self.left_V = np.empty((self.rows, self.cols - 1))
self.upleft_V = np.empty((self.rows - 1, self.cols - 1))
self.up_V = np.empty((self.rows - 1, self.cols))
self.upright_V = np.empty((self.rows - 1, self.cols - 1))
self.bgd_gmm = None
self.fgd_gmm = None
self.comp_idxs = np.empty((self.rows, self.cols), dtype=np.uint32)
self.gc_graph = None
self.gc_graph_capacity = None # Edge capacities
self.gc_source = self.cols * self.rows # "object" terminal S
self.gc_sink = self.gc_source + 1 # "background" terminal T
self.calc_beta_smoothness()
self.init_GMMs()
self.run()
def calc_beta_smoothness(self):
_left_diff = self.img[:, 1:] - self.img[:, :-1]
_upleft_diff = self.img[1:, 1:] - self.img[:-1, :-1]
_up_diff = self.img[1:, :] - self.img[:-1, :]
_upright_diff = self.img[1:, :-1] - self.img[:-1, 1:]
self.beta = np.sum(np.square(_left_diff)) + np.sum(np.square(_upleft_diff)) + \
np.sum(np.square(_up_diff)) + \
np.sum(np.square(_upright_diff))
self.beta = 1 / (2 * self.beta / (
# Each pixel has 4 neighbors (left, upleft, up, upright)
4 * self.cols * self.rows
# The 1st column doesn't have left, upleft and the last column doesn't have upright
- 3 * self.cols
- 3 * self.rows # The first row doesn't have upleft, up and upright
+ 2)) # The first and last pixels in the 1st row are removed twice
print('Beta:', self.beta)
# Smoothness term V described in formula (11)
self.left_V = self.gamma * np.exp(-self.beta * np.sum(
np.square(_left_diff), axis=2))
self.upleft_V = self.gamma / np.sqrt(2) * np.exp(-self.beta * np.sum(
np.square(_upleft_diff), axis=2))
self.up_V = self.gamma * np.exp(-self.beta * np.sum(
np.square(_up_diff), axis=2))
self.upright_V = self.gamma / np.sqrt(2) * np.exp(-self.beta * np.sum(
np.square(_upright_diff), axis=2))
def classify_pixels(self):
self.bgd_indexes = np.where(np.logical_or(
self.mask == DRAW_BG['val'], self.mask == DRAW_PR_BG['val']))
self.fgd_indexes = np.where(np.logical_or(
self.mask == DRAW_FG['val'], self.mask == DRAW_PR_FG['val']))
assert self.bgd_indexes[0].size > 0
assert self.fgd_indexes[0].size > 0
print('(pr_)bgd count: %d, (pr_)fgd count: %d' % (
self.bgd_indexes[0].size, self.fgd_indexes[0].size))
def init_GMMs(self):
self.bgd_gmm = GaussianMixture(self.img[self.bgd_indexes])
self.fgd_gmm = GaussianMixture(self.img[self.fgd_indexes])
def assign_GMMs_components(self):
"""Step 1 in Figure 3: Assign GMM components to pixels"""
self.comp_idxs[self.bgd_indexes] = self.bgd_gmm.which_component(
self.img[self.bgd_indexes])
self.comp_idxs[self.fgd_indexes] = self.fgd_gmm.which_component(
self.img[self.fgd_indexes])
def learn_GMMs(self):
"""Step 2 in Figure 3: Learn GMM parameters from data z"""
self.bgd_gmm.fit(self.img[self.bgd_indexes],
self.comp_idxs[self.bgd_indexes])
self.fgd_gmm.fit(self.img[self.fgd_indexes],
self.comp_idxs[self.fgd_indexes])
def construct_gc_graph(self):
bgd_indexes = np.where(self.mask.reshape(-1) == DRAW_BG['val'])
fgd_indexes = np.where(self.mask.reshape(-1) == DRAW_FG['val'])
pr_indexes = np.where(np.logical_or(
self.mask.reshape(-1) == DRAW_PR_BG['val'], self.mask.reshape(-1) == DRAW_PR_FG['val']))
print('bgd count: %d, fgd count: %d, uncertain count: %d' % (
len(bgd_indexes[0]), len(fgd_indexes[0]), len(pr_indexes[0])))
edges = []
self.gc_graph_capacity = []
# t-links
edges.extend(
list(zip([self.gc_source] * pr_indexes[0].size, pr_indexes[0])))
_D = -np.log(self.bgd_gmm.calc_prob(self.img.reshape(-1, 3)[pr_indexes]))
self.gc_graph_capacity.extend(_D.tolist())
assert len(edges) == len(self.gc_graph_capacity)
edges.extend(
list(zip([self.gc_sink] * pr_indexes[0].size, pr_indexes[0])))
_D = -np.log(self.fgd_gmm.calc_prob(self.img.reshape(-1, 3)[pr_indexes]))
self.gc_graph_capacity.extend(_D.tolist())
assert len(edges) == len(self.gc_graph_capacity)
edges.extend(
list(zip([self.gc_source] * bgd_indexes[0].size, bgd_indexes[0])))
self.gc_graph_capacity.extend([0] * bgd_indexes[0].size)
assert len(edges) == len(self.gc_graph_capacity)
edges.extend(
list(zip([self.gc_sink] * bgd_indexes[0].size, bgd_indexes[0])))
self.gc_graph_capacity.extend([9 * self.gamma] * bgd_indexes[0].size)
assert len(edges) == len(self.gc_graph_capacity)
edges.extend(
list(zip([self.gc_source] * fgd_indexes[0].size, fgd_indexes[0])))
self.gc_graph_capacity.extend([9 * self.gamma] * fgd_indexes[0].size)
assert len(edges) == len(self.gc_graph_capacity)
edges.extend(
list(zip([self.gc_sink] * fgd_indexes[0].size, fgd_indexes[0])))
self.gc_graph_capacity.extend([0] * fgd_indexes[0].size)
assert len(edges) == len(self.gc_graph_capacity)
# print(len(edges))
# n-links
img_indexes = np.arange(self.rows * self.cols,
dtype=np.uint32).reshape(self.rows, self.cols)
mask1 = img_indexes[:, 1:].reshape(-1)
mask2 = img_indexes[:, :-1].reshape(-1)
edges.extend(list(zip(mask1, mask2)))
self.gc_graph_capacity.extend(self.left_V.reshape(-1).tolist())
assert len(edges) == len(self.gc_graph_capacity)
mask1 = img_indexes[1:, 1:].reshape(-1)
mask2 = img_indexes[:-1, :-1].reshape(-1)
edges.extend(list(zip(mask1, mask2)))
self.gc_graph_capacity.extend(
self.upleft_V.reshape(-1).tolist())
assert len(edges) == len(self.gc_graph_capacity)
mask1 = img_indexes[1:, :].reshape(-1)
mask2 = img_indexes[:-1, :].reshape(-1)
edges.extend(list(zip(mask1, mask2)))
self.gc_graph_capacity.extend(self.up_V.reshape(-1).tolist())
assert len(edges) == len(self.gc_graph_capacity)
mask1 = img_indexes[1:, :-1].reshape(-1)
mask2 = img_indexes[:-1, 1:].reshape(-1)
edges.extend(list(zip(mask1, mask2)))
self.gc_graph_capacity.extend(
self.upright_V.reshape(-1).tolist())
assert len(edges) == len(self.gc_graph_capacity)
assert len(edges) == 4 * self.cols * self.rows - 3 * (self.cols + self.rows) + 2 + \
2 * self.cols * self.rows
self.gc_graph = ig.Graph(self.cols * self.rows + 2)
self.gc_graph.add_edges(edges)
def estimate_segmentation(self):
"""Step 3 in Figure 3: Estimate segmentation"""
mincut = self.gc_graph.st_mincut(
self.gc_source, self.gc_sink, self.gc_graph_capacity)
print('foreground pixels: %d, background pixels: %d' % (
len(mincut.partition[0]), len(mincut.partition[1])))
pr_indexes = np.where(np.logical_or(
self.mask == DRAW_PR_BG['val'], self.mask == DRAW_PR_FG['val']))
img_indexes = np.arange(self.rows * self.cols,
dtype=np.uint32).reshape(self.rows, self.cols)
self.mask[pr_indexes] = np.where(np.isin(img_indexes[pr_indexes], mincut.partition[0]),
DRAW_PR_FG['val'], DRAW_PR_BG['val'])
self.classify_pixels()
def calc_energy(self):
U = 0
for ci in range(self.gmm_components):
idx = np.where(np.logical_and(self.comp_idxs == ci, np.logical_or(
self.mask == DRAW_BG['val'], self.mask == DRAW_PR_BG['val'])))
U += np.sum(-np.log(self.bgd_gmm.coefs[ci] * self.bgd_gmm.calc_score(self.img[idx], ci)))
idx = np.where(np.logical_and(self.comp_idxs == ci, np.logical_or(
self.mask == DRAW_FG['val'], self.mask == DRAW_PR_FG['val'])))
U += np.sum(-np.log(self.fgd_gmm.coefs[ci] * self.fgd_gmm.calc_score(self.img[idx], ci)))
V = 0
mask = self.mask.copy()
mask[np.where(mask == DRAW_PR_BG['val'])] = DRAW_BG['val']
mask[np.where(mask == DRAW_PR_FG['val'])] = DRAW_FG['val']
V += np.sum(self.left_V * (mask[:, 1:] == mask[:, :-1]))
V += np.sum(self.upleft_V * (mask[1:, 1:] == mask[:-1, :-1]))
V += np.sum(self.up_V * (mask[1:, :] == mask[:-1, :]))
V += np.sum(self.upright_V * (mask[1:, :-1] == mask[:-1, 1:]))
return U, V, U + V
def run(self, num_iters=1, skip_learn_GMMs=False):
print('skip learn GMMs:', skip_learn_GMMs)
for _ in range(num_iters):
if not skip_learn_GMMs:
self.assign_GMMs_components()
self.learn_GMMs()
self.construct_gc_graph()
self.estimate_segmentation()
skip_learn_GMMs = False
# print('data term: %f, smoothness term: %f, total energy: %f' % self.calc_energy())
if __name__ == '__main__':
# print documentation
print(__doc__)
# Loading images
if len(sys.argv) == 2:
filename = sys.argv[1] # for drawing purposes
else:
print("No input image given, so loading default image, messi5.jpg \n")
print("Correct Usage: python grabcut.py <filename> \n")
filename = 'messi5.jpg'
img = cv.imread(filename)
img2 = img.copy() # a copy of original image
mask = np.zeros(img.shape[:2], dtype=np.uint8) # mask initialized to PR_BG
output = np.zeros(img.shape, np.uint8) # output image to be shown
# input and output windows
cv.namedWindow('output')
cv.namedWindow('input')
cv.setMouseCallback('input', onmouse)
cv.moveWindow('input', img.shape[1]+10, 90)
print(" Instructions: \n")
print(" Draw a rectangle around the object using right mouse button \n")
while(1):
cv.imshow('output', output)
cv.imshow('input', img)
k = cv.waitKey(1)
# key bindings
if k == 27: # esc to exit
break
elif k == ord('0'): # BG drawing
print(" mark background regions with left mouse button \n")
value = DRAW_BG
elif k == ord('1'): # FG drawing
print(" mark foreground regions with left mouse button \n")
value = DRAW_FG
elif k == ord('2'): # PR_BG drawing
value = DRAW_PR_BG
elif k == ord('3'): # PR_FG drawing
value = DRAW_PR_FG
elif k == ord('s'): # save image
bar = np.zeros((img.shape[0], 5, 3), np.uint8)
res = np.hstack((img2, bar, img, bar, output))
cv.imwrite('grabcut_output.png', res)
print(" Result saved as image \n")
elif k == ord('r'): # reset everything
print("resetting \n")
rect = (0, 0, 1, 1)
drawing = False
rectangle = False
rect_or_mask = 100
rect_over = False
value = DRAW_FG
img = img2.copy()
# mask initialized to PR_BG
mask = np.zeros(img.shape[:2], dtype=np.uint8)
# output image to be shown
output = np.zeros(img.shape, np.uint8)
elif k == ord('n'): # segment the image
print(""" For finer touchups, mark foreground and background after pressing keys 0-3
and again press 'n' \n""")
print(rect)
if (rect_or_mask == 0): # grabcut with rect
gc = GrabCut(img2, mask, rect)
rect_or_mask = 1
elif rect_or_mask == 1: # grabcut with mask
gc.run(skip_learn_GMMs=skip_learn_GMMs)
skip_learn_GMMs = False
mask2 = np.where((mask == 1) + (mask == 3), 255, 0).astype('uint8')
output = cv.bitwise_and(img2, img2, mask=mask2)
cv.destroyAllWindows()