-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathTrain_punet.py
executable file
·168 lines (142 loc) · 6.8 KB
/
Train_punet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import os
import errno
import random
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
# from load_LIDC_data import LIDC_IDRI
from Models import ProbabilisticUnet
from Utilis import CustomDataset_punet, test_punet, evaluate_punet
from Utilis import generalized_energy_distance, segmentation_scores
# ===================
# main computation:
# ===================
def train_punet(epochs,
iteration,
train_batch_size,
lr,
num_filters,
input_channels,
latent_dim,
no_conv_fcomb,
num_classes,
beta,
test_samples_no,
dataset_path,
dataset_tag):
""" This is the panel to control the training of baseline Probabilistic U-net.
Args:
input_dim: channel number of input image, for example, 3 for RGB
class_no: number of classes of classification
repeat: repat the same experiments with different stochastic seeds, we normally run each experiment at least 3 times
train_batchsize: training batch size, this depends on the GPU memory
validate_batchsize: we normally set-up as 1
num_epochs: training epoch length
learning_rate:
input_height: resolution of input image
input_width: resolution of input image
alpha: regularisation strength hyper-parameter
width: channel number of first encoder in the segmentation network, for the standard U-net, it is 64
depth: down-sampling stages of the segmentation network
data_path: path to where you store your all of your data
dataset_tag: 'mnist' for MNIST; 'brats' for BRATS 2018; 'lidc' for LIDC lung data set
label_mode: 'multi' for multi-class of proposed method; 'p_unet' for baseline probabilistic u-net; 'normal' for binary on MNIST; 'binary' for general binary segmentation
loss_f: 'noisy_label' for our noisy label function, or 'dice' for dice loss
save_probability_map: if True, we save all of the probability maps of output of networks
Returns:
"""
for itr in range(iteration):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_path = dataset_path + '/train'
validate_path = dataset_path + '/validate'
test_path = dataset_path + '/test'
dataset_train = CustomDataset_punet(dataset_location=train_path, dataset_tag=dataset_tag, noisylabel='p_unet', augmentation=True)
dataset_val = CustomDataset_punet(dataset_location=validate_path, dataset_tag=dataset_tag, noisylabel='multi', augmentation=False)
dataset_test = CustomDataset_punet(dataset_location=test_path, dataset_tag=dataset_tag, noisylabel='multi', augmentation=False)
# dataset_size = len(dataset_train)
# indices = list(range(dataset_size))
# split = int(np.floor(0.1 * dataset_size))
# np.random.shuffle(indices)
# train_indices, test_indices = indices[split:], indices[:split]
# train_sampler = SubsetRandomSampler(train_indices)
# test_sampler = SubsetRandomSampler(test_indices)
# print("Number of training/test patches:", (len(train_indices),len(test_indices)))
train_loader = DataLoader(dataset_train, batch_size=train_batch_size, shuffle=True, num_workers=4, drop_last=True)
val_loader = DataLoader(dataset_val, batch_size=1, shuffle=False, num_workers=1, drop_last=False)
test_loader = DataLoader(dataset_test, batch_size=1, shuffle=False, num_workers=1, drop_last=False)
# net = ProbabilisticUnet(input_channels=3, num_classes=1, num_filters=[8, 16, 32, 64], latent_dim=4, no_convs_fcomb=2, beta=10)
net = ProbabilisticUnet(input_channels=input_channels, num_classes=num_classes, num_filters=num_filters, latent_dim=latent_dim, no_convs_fcomb=no_conv_fcomb, beta=beta)
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=1e-5)
# epochs = 100
training_iterations = len(dataset_train) // train_batch_size - 1
for epoch in range(epochs):
#
net.train()
#
for step, (patch, mask, mask_name) in enumerate(train_loader):
#
# mask_list = [mask_over, mask_under, mask_wrong, mask_true]
# mask = random.choice(mask_list)
# print(np.unique(mask))
#
patch = patch.to(device)
mask = mask.to(device)
# mask = torch.unsqueeze(mask,1)
net.forward(patch, mask, training=True)
elbo, reconstruction, kl = net.elbo(mask)
# reg_loss = l2_regularisation(net.posterior) + l2_regularisation(net.prior) + l2_regularisation(net.fcomb.layers)
# loss = -elbo + 1e-5 * reg_loss
loss = -elbo
optimizer.zero_grad()
loss.backward()
optimizer.step()
#
epoch_noisy_labels = []
epoch_noisy_segs = []
#
if (step + 1) == training_iterations:
#
validate_iou = 0
generalized_energy_distance_epoch = 0
#
validate_iou, generalized_energy_distance_epoch = evaluate_punet(net=net, val_data=val_loader, class_no=num_classes, sampling_no=4)
print('epoch:' + str(epoch))
print('val dice: ' + str(validate_iou))
print('val generalized_energy: ' + str(generalized_energy_distance_epoch))
print('train loss: ' + str(loss.item()))
print('kl is: ' + str(kl.item()))
print('reconstruction loss is: ' + str(reconstruction.item()))
print('\n')
#
print('\n')
#
save_path = '../Exp_Results_PUnet'
#
try:
#
os.mkdir(save_path)
#
except OSError as exc:
#
if exc.errno != errno.EEXIST:
#
raise
#
pass
#
save_path = save_path + '/Exp_' + str(itr) + \
'_punet_' + \
'_train_batch_' + str(train_batch_size) + \
'_latent_dim_' + str(latent_dim) + \
'_lr_' + str(lr) + \
'_epochs_' + str(epochs) + \
'_beta_' + str(beta) + \
'_test_sample_no_' + str(test_samples_no)
#
test_punet(net=net, testdata=test_loader, save_path=save_path, sampling_times=test_samples_no)
#
print('Training is finished.')
#