-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdataset_utils.py
193 lines (139 loc) · 5.88 KB
/
dataset_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from __future__ import unicode_literals
import glob
import os
import random
import librosa
import numpy as np
import tensorflow as tf
import xml.etree.ElementTree as ET
import csv
import time
import youtube_dl
import logging
from pydub import AudioSegment
from datetime import datetime
def normalize_wav(wav_dir, sampling_rate, audio_ext):
file_list = glob.glob(os.path.join(wav_dir, audio_ext))
# Iterate over the channels audio files
for fn in file_list:
# Load the audio time series and its sampling rate
sound_clip,s = librosa.load(fn, sr=sampling_rate) #sample input files at 16kHz
file_name = os.path.basename(fn)
dest_path = os.path.join(wav_dir,'normalized',file_name)
librosa.output.write_wav(dest_path, y=sound_clip, sr=sampling_rate, norm=True)
# Transform categorical labels by enumerating one boolean column for each category
# indicator vector for each class label
def one_hot_encode(labels):
"""builds the hot encoded labels in case of many nominal class labels
:param labels: the nominal labels
:type numpy vector of int values (dimension=1)
:returns: A matrix of the one-hot encoded `labels`
:raises: -
"""
n_labels = len(labels)
n_unique_labels = len(np.unique(labels))
#prepare the matrix with rows= size of the dataset and columns= number of distinct labels
one_hot_encode = np.zeros((n_labels,n_unique_labels))
#add `1` in the corresponding label column for each row
one_hot_encode[np.arange(n_labels), labels] = 1
print("Labels size [AFTER one-hot encode]: ",one_hot_encode.shape)
return one_hot_encode
# Forrmat training set for the LibLinear library usage
def liblinear_data_format(features, labels):
data=[]
for i,vector in enumerate(features):
row=[]
# Append the label
if int(labels[i])==1:
row.append('+1')
else:
row.append('-1')
# Append the values as <index>:<value>
for j,value in enumerate(vector):
index=j+1
row.append(str(index)+':'+str(value))
# Return the feature vector
data.append(row)
return data
def TRStoCSV(parent_dir, sub_dirs):
"""Transform a TRS file to a CSV file
:param trsfile: path to TRS file
:raises: -
"""
file_ext = "*.trs"
utter_list = []
#sub_dirs = ['S01','S02','S03','S04','S05','S06','S07','S08','S09','S10',
# 'S11','S12','S13','S14','S15','S16','S17','S18','S19','S20',
# 'S21']
for sub_dir in sub_dirs:
for fn in glob.glob(os.path.join(parent_dir, sub_dir, file_ext)):
utter_list = []
tree = ET.parse(fn)
root = tree.getroot()
# open a file for writing
csv_name = os.path.basename(fn).split('.')[0]
csv_data = open(parent_dir+'/CSV/'+csv_name+'.csv', 'w')
# create the csv writer object
csvwriter = csv.writer(csv_data)
csv_head = []
csv_head.append('start')
csv_head.append('end')
csv_head.append('utterance')
csvwriter.writerow(csv_head)
turn = -99
start_times=[]
for i,sync in enumerate(root.findall(".//Sync")):
#if it corresponds to the `start` sync tag
if (sync.tail.replace('\n', '') and
(sync.attrib['time'] not in start_times) and
(i != turn+1)):
turn = i
utter = []*3
utter.insert(0, sync.attrib['time'])
start_times.append(sync.attrib['time'])
sync_tail = sync.tail.replace('\n', '')
utter.insert(2, sync_tail)
else:
#if it corresponds to the `end` sync tag
if i == turn+1:
utter.insert(1, sync.attrib['time'])
utter_list.append(utter)
print(utter)
csvwriter.writerow(utter)
# if it's an end and a start tag at the same time
if sync.tail.replace('\n', ''):
turn = i
utter = []*3
utter.insert(0, sync.attrib['time'])
sync_tail = sync.tail.replace('\n', '')
utter.insert(2, sync_tail)
#othrwise
else:
continue
csv_data.close()
def download_youtube_audio(yid, start, end, label):
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
youtube_url_base = 'https://youtu.be'
if label is not None:
ydl_opts["outtmpl"]= audioset_dir+'/Audio/yvid__%(id)s__'+str(label)+'.%(ext)s'
# Join URL elements as in `youtu.be/m55Fx5rDh8g?start=50&end=60`
youtube_url = youtube_url_base + '/' + yid + '?start=' + str(start) + '&end=' + str(end)
r = None
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
r = ydl.extract_info(youtube_url, download=False)
audiofile = AudioSegment.from_wav(audioset_dir+'/Audio/yvid__'+r['id']+'__'+str(label)+'.wav')
sliced = audiofile[int(float(row[1])*1000):int(float(row[2])*1000)]
sliced.export(audioset_dir+'/Audio/yvid__'+r['id']+'__'+str(label)+'.wav', format="wav")
else:
print(yid+': Already exists!')
if __name__ == "__main__":
#logger = configure_logging()
main()