-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbeluga.R
76 lines (52 loc) · 1.45 KB
/
beluga.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# beluga
#
source('pen-s-functions.R')
dd <- read.csv('whale.csv')
y0 <- dd$Bouts2 # Nursing2 # 1
x0 <- dd$Period1
i0 <- !is.na(y0)
x0 <- x0[i0]
y0 <- y0[i0]
n <- length(x0)
x0 <- x0 / n
set.seed(123)
ii <- sort(sample(n, 100, repl=FALSE))
x <- x0[ii]
y <- y0[ii]
n <- length(x)
# x <- x0
# y <- y0
plot(y ~ x, pch=19, cex=.7, col='gray')
p <- 3
num.knots <- max(5, min(floor(length(unique(x))/4), 15))
knots <- quantile(unique(x),seq(0,1,length=num.knots+2))[-c(1,(num.knots+2))]
xpoly <- rep(1,n)
for (j in 1:p) xpoly <- cbind(xpoly,x^j)
xspline <- outer(x, knots, "-")
xspline <- pmax(xspline, 0)^p
X <- cbind(xpoly,xspline)
D <- diag(c(rep(0,ncol(xpoly)),rep(1,ncol(xspline))))
lambdas <- seq(1e-8, 3, length=100) # exp(seq(-20, 0, length=100))
ll <- length(lambdas)
tmp.ls <- pen.ls.gcv(y, X, D, lambdas)
(tmp.ls$lam)
plot(y ~ x, pch=19, col='gray', cex=.7)
lines(x, tmp.ls$yhat, lwd=2)
# tuning constants for the S-estimator
cc <- 1.54764
b <- .5
# cc <- .3
# b <- .24
# Cubic polynomials
NNN <- NN <- 100 # ??
tmp.m <- pen.m.rcv(y=y, X=X, N=NN, D=D, lambdas=lambdas, num.knots=num.knots, p=p, epsilon=1e-6)
(tmp.m$lam)
plot(y ~ x, pch=19, col='gray', cex=.7)
lines(x, tmp.ls$yhat, lwd=2)
lines(x, tmp.m$yhat, col="red", lwd=2)
tmp.s <- pen.s.rgcv(y, X, D, lambdas, num.knots, p, NN, cc, b, NNN)
(tmp.s$lam)
plot(y ~ x, pch=19, col='gray', cex=.7)
lines(x, tmp.ls$yhat, lwd=2)
lines(x, tmp.m$yhat, col="red", lwd=2)
lines(x, tmp.s$yhat, col="blue", lwd=2)