-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathCV2XMode4.m
196 lines (166 loc) · 9.36 KB
/
CV2XMode4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
function [PDR, deltaHD, deltaSEN, deltaPRO, deltaCOL, CBR] = CV2XMode4(beta,lambda,Pt,S,B);
% CV2XMode4 is the main script of the implementation of the analytical
% models of the communication performance of C-V2X or LTE-V Mode 4
% described in the following paper:
%
% Manuel Gonzalez-Martín, Miguel Sepulcre, Rafael Molina-Masegosa, Javier Gozalvez,
% "Analytical Models of the Performance of C-V2X Mode 4 Vehicular Communications",
% IEEE Transactions on Vehicular Technology, Vol. 68, Issue 2, Feb. 2019. DOI: 10.1109/TVT.2018.2888704
% Final version available at: https://ieeexplore.ieee.org/document/8581518
% Post-print version available at: https://arxiv.org/abs/1807.06508
%
% The paper presents analytical models for the average PDR (Packet Delivery Ratio) as a
% function of the distance between transmitter and receiver, and for the four different
% types of transmission errors that can be encountered in C-V2X or LTE-V Mode 4. The models
% have been validated for a wide range of transmission parameters and traffic densities by
% comparing the results obtained with the analytical models to those obtained with a C-V2X
% or LTE-V Mode 4 simulator implemented by the authors over the Veins simulation platform.
%
% CV2XMode4.m is the main script you have to run to get the PDR curve as a function of the
% distance for a given set of parameters, and the probability of each of the four
% transmission errors.
%
% The resulting figures are compared with simulations when the same configuration
% is available in the ./simulations folder.
%
% The resulting figures are stored in the ./fig folder.
%
% Input parameters:
% beta: traffic density in veh/m. Values tested: 0.1, 0.2 and 0.3.
% lambda: packet transmission frequency in Hz. Values tested: 10 and 20.
% Pt: transmission power in dBm. Values tested: 20 and 23.
% S: number of sub-channels. Values tested: 2 and 4.
% B: packet size in bytes. Values tested: 190.
%
% Output metrics:
% PDR: Packet Delivery Ratio for different Tx-Rx distances
% deltaHD: probability of packet loss due to half-duplex transmissions for different Tx-Rx distances
% deltaSEN: probability of packet loss due to a received signal power below the sensing power threshold for different Tx-Rx distances
% deltaPRO: probability of packet loss due to propagation effects for different Tx-Rx distances
% deltaCOL: probability of packet loss due to packet collisions for different Tx-Rx distances
% CBR: Channel Busy Ratio between 0 and 1
%
% Overall code structure:
% CV2XMode4.m
% |----> CV2XMode4_common.m ----> get_PL_SH.m, get_SINRdistribution.m, get_BLER.m
% |----> CV2XMode4_Step2.m ----> get_PL_SH.m, get_SINRdistribution.m, get_BLER.m
% |----> CV2XMode4_Step3.m ----> get_PL_SH.m, get_SINRdistribution.m, get_BLER.m
%
% The equations that are identified with a number between brackets in this script are the ones
% that also appear in the paper so that they can be easily identified.
disp('=========================================================')
disp('Input parameters:')
fprintf(' beta = %f veh/m \n', beta)
fprintf(' lambda = %d Hz \n', lambda)
fprintf(' Pt = %d dBm \n', Pt)
fprintf(' S = %d subchannels \n', S)
fprintf(' B = %d bytes \n', B)
distance = [0:25:500]; % Tx-Rx distances to evaluate (m)
Psen = -90.5; % Sensing threshold (dBm)
step_dB = 0.1; % Discrete steps to compute the PDF of the SNR and SINR (dB)
% Calculate the number of RBs that are needed to transmit each message
% and the coding used based on the number of sub-channels and packet size:
switch B
case 190
switch S
case 4
coding = 1; % Used to identify the BLER vs SINR curve to be used (190 Bytes, QPSK r=0.7, Vr = 280 km/h)
RBs = 10; % Number of RBs needed to transmit the DATA field of each message
case 2
coding = 2; % Used to identify the BLER vs SINR curve to be used (190 Bytes, QPSK r=0.5, Vr = 280 km/h)
RBs = 12; % Number of RBs needed to transmit the DATA field of each message
end
end
noise = -95 - 10*log10(50/RBs); % Noise corresponding to the DATA field of each message. Assumes a noise figure of 9dB and 10MHz channel (background noise of -95dBm). The total number of RBs in 10MHz is 50.
% Calculate errors associated to HD, SEN and PRO:
[ deltaHD_pre , deltaSEN_pre , deltaPRO_pre ] = CV2XMode4_common( lambda , Pt , distance, Psen , step_dB , noise , coding );
% Calculate probability of collision considering only Step 2 and CBR:
[ deltaCOL2_pre , CBR ] = CV2XMode4_Step2( beta , lambda , Pt , S , distance , Psen , step_dB , noise , coding , deltaPRO_pre );
% Calculate weighting factor alpha using equation (22):
if CBR < 0.2
alpha = 0;
elseif CBR <= 0.7
alpha = 2*CBR - 0.4;
else
alpha = 1;
end
% Calculate probability of collision considering only Step 3:
if alpha < 1
[ deltaCOL3_pre ] = CV2XMode4_Step3( beta , lambda , Pt , S , distance , Psen , step_dB , noise , coding , deltaPRO_pre );
else
deltaCOL3_pre = 0;
end
% Calculate final probabilities for each type of error:
deltaHD = deltaHD_pre; % Equation (6.1)
deltaSEN = deltaSEN_pre .* (1 - deltaHD); % Equation (6.2)
deltaPRO = deltaPRO_pre .* (1 - deltaHD_pre) .* (1 - deltaSEN_pre); % Equation (6.3)
deltaCOL2 = deltaCOL2_pre .* (1 - deltaHD_pre) .* (1 - deltaSEN_pre) .* (1 - deltaPRO_pre); % Equation (6.4)
deltaCOL3 = deltaCOL3_pre .* (1 - deltaHD_pre) .* (1 - deltaSEN_pre) .* (1 - deltaPRO_pre); % Equation (6.5)
deltaCOL = alpha*deltaCOL2 + (1-alpha)*deltaCOL3; % Equation (21)
% Calculate PDR:
PDR = 1 - deltaHD - deltaSEN - deltaPRO - deltaCOL; % Equation (6)
% Presentation of the obtained results:
% Load simulation results (if available):
simulation_path = [pwd '\simulations\' num2str(S) 'subchannels\' num2str(Pt) 'dBm'];
sim_file = [ simulation_path '\FALLOS_LOS_D2D_' num2str(beta*1000) 'vehpkm_16Alg_' num2str(1/lambda) 's_' num2str(8*B) 'bit.fig' ];
fig_name = ['CV2XMode4_beta' num2str(beta) '-lambda' num2str(lambda) '-Pt' num2str(Pt) '-S' num2str(S) '-B' num2str(B)];
if exist(sim_file,'file')==2
open(sim_file)
lh = findall(gca, 'type', 'line');
X = get(lh,'xdata');
Y = get(lh,'ydata');
deltaHD_sim = Y{5};
deltaSEN_sim = Y{1};
deltaPRO_sim = Y{4};
deltaCOL_sim = Y{3};
close
figure; hold on; grid on; box on
plot(distance , deltaHD_sim/100,'b-','LineWidth',2)
plot(distance , deltaSEN_sim/100,'m-','LineWidth',2)
plot(distance , deltaPRO_sim/100,'r-','LineWidth',2)
plot(distance , deltaCOL_sim/100,'k-','LineWidth',2)
else
figure; hold on; grid on; box on
end
% Plot errors:
ylabel('Error probability')
xlabel('Distance [m]')
plot(distance , deltaHD,'b--','LineWidth',2)
plot(distance , deltaSEN,'m--','LineWidth',2)
plot(distance , deltaPRO,'r--','LineWidth',2)
plot(distance , deltaCOL,'k--','LineWidth',2)
ylim([0 1])
if exist(sim_file,'file')==2
legend('\delta_{HD} Simulation','\delta_{SEN} Simulation','\delta_{PRO} Simulation','\delta_{COL} Simulation','\delta_{HD} Analytical','\delta_{SEN} Analytical','\delta_{PRO} Analytical','\delta_{COL} Analytical','Location','northwest')
else
legend('\delta_{HD} Analytical','\delta_{SEN} Analytical','\delta_{PRO} Analytical','\delta_{COL} Analytical','Location','northwest')
end
hgsave(['fig/' fig_name '_errors.fig'])
% Plot PDR:
figure; hold on; grid on; box on
if exist(sim_file,'file')==2
PDR_sim = (100 - deltaHD_sim - deltaSEN_sim - deltaPRO_sim - deltaCOL_sim)/100;
plot(distance,PDR_sim,'b-','LineWidth',2)
plot(distance,PDR,'b--','LineWidth',2)
legend('PDR Simulation','PDR Analytical')
else
plot(distance,PDR,'--')
legend('PDR Analytical')
end
ylim([0 1])
ylabel('PDR')
xlabel('Distance [m]')
hgsave(['fig/' fig_name '_PDR.fig'])
fprintf('Channel load: CBR = %.2f, alpha = %f \n',CBR, alpha)
if exist(sim_file,'file')==2
MAD_HD = mean( abs(deltaHD*100 - deltaHD_sim) ); % Equation (35)
MAD_SEN = mean( abs(deltaSEN*100 - deltaSEN_sim) ); % Equation (35)
MAD_PRO = mean( abs(deltaPRO*100 - deltaPRO_sim) ); % Equation (35)
MAD_COL = mean( abs(deltaCOL*100 - deltaCOL_sim) ); % Equation (35)
MAD = mean( abs(PDR - PDR_sim) * 100 ); % Equation (35)
disp('Mean Absolute Deviation results : ')
fprintf('PDR \tHD \tSEN \tPRO \tCOL \n')
fprintf('%.2f\t%.2f\t%.2f\t%.2f\t%.2f \n', MAD, MAD_HD, MAD_SEN, MAD_PRO, MAD_COL)
end
disp('=========================================================')
return