-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtarski.rkt
338 lines (268 loc) · 7.74 KB
/
tarski.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#lang racket
(require redex)
; Simple calculus loosely based around Tarski's cylindrical logic
; and Monadic Boolean algebra and Interior algebra
; and S5 Modal logic
(define-language cyl
(z integer)
; Think of κ as pointer/an index into an array of quantifiers
(κ natural)
(τ ∅ ⊤ (τ → τ) (τ + τ) (τ × τ)
; Possibly, like existential
(Σ κ τ)
; Necessarily, like universal
(∀ κ τ)
(κ = κ)
Z)
(v x
!
(λ (x τ) e)
(e Δ e)
(inl τ e) (inr τ e)
(κ ⊢ v)
(box κ v)
(id κ)
z)
(e v
(absurd τ e)
(e e)
(fst e)
(snd e)
(case e (x e) (x e))
(κ ⊢ e)
(box κ e)
(let (x e) e)
(T e)
(K e e)
(dup e)
(∀-comm e)
(Σ-comm e)
(e ∘ e)
(sym e)
(cast e e)
(J e κ κ e)
(e + e)
(e - e)
(e × e)
)
(x variable-not-otherwise-mentioned)
#:binding-forms
(λ (x τ) e #:refers-to x)
(case e (x e #:refers-to x) (x e #:refers-to x))
(let (x e) e #:refers-to x))
(define-extended-language cyl+Γ cyl
[Γ () (p ...)]
[p [x : τ] [given κ]])
(define-judgment-form cyl+Γ
#:mode (types I I O)
#:contract (types Γ e τ)
; Variables
[---------------------
(types ([x : τ] p ...) x τ)]
[(types (p ...) x_1 τ_1)
(side-condition (different x_1 x_2))
------------------------------------
(types ([x_2 : τ_2] p ...) x_1 τ_1)]
; Simply typed lambda calculus
[(types Γ e_0 (τ_0 → τ_1)) (types Γ e_1 τ_0)
-------------------------
(types Γ (e_0 e_1) τ_1)]
[(types ([x : τ_0] p ...) e τ_1)
-------------------------
(types (p ...) (λ (x τ_0) e) (τ_0 → τ_1))]
; Empty Set
[(types Γ e ∅)
-------------------------
(types Γ (absurd τ e) τ)]
; Point
[-------------------------
(types Γ ! ⊤)]
; Product
[(types Γ e_0 τ_0) (types Γ e_1 τ_1)
-------------------------
(types Γ (e_0 Δ e_1) (τ_0 × τ_1))]
[(types Γ e (τ_0 × τ_1))
-------------------------
(types Γ (fst e) τ_0)]
[(types Γ e (τ_0 × τ_1))
-------------------------
(types Γ (snd e) τ_1)]
; Sum
[(types Γ e τ_0)
-------------------------
(types Γ (inl τ_1 e) (τ_0 + τ_1))]
[(types Γ e τ_1)
-------------------------
(types Γ (inr τ_0 e) (τ_0 + τ_1))]
[(types (p ...) e_0 (τ_0 + τ_1))
(types ([x_0 : τ_0] p ...) e_1 τ_2)
(types ([x_1 : τ_1] p ...) e_2 τ_2)
-------------------------
(types (p ...) (case e_0 (x_0 e_1) (x_1 e_2)) τ_2)]
; Universal
[(types () e τ)
-------------------------
(types Γ (κ ⊢ e) (∀ κ τ))]
[(types Γ e (∀ κ τ))
-------------------------
(types Γ (T e) τ)]
[(types Γ e_0 (∀ κ (τ_0 → τ_1)))
(types Γ e_1 (∀ κ τ_0))
-------------------------
(types Γ (K e_0 e_1) (∀ κ τ_1))]
[(types Γ e (∀ κ τ))
-------------------------
(types Γ (dup e) (∀ κ (∀ κ τ)))]
; Existentials
; yes the M-word
[(types Γ e τ)
-------------------------
(types Γ (box κ e) (Σ κ τ))]
[(types (p ...) e_0 (Σ κ τ_0))
(types ([x : τ_0] p ...) e_1 (Σ κ τ_1))
-------------------------
(types (p ...) (let (x e_0) e_1) (Σ κ τ_1))]
; Commutativity of existentials/universals
[(types Γ e (∀ κ_1 (∀ κ_0 τ)))
-------------------------
(types Γ (∀-comm e) (∀ κ_0 (∀ κ_1 τ)))]
[(types Γ e (Σ κ_1 (Σ κ_0 τ)))
-------------------------
(types Γ (Σ-comm e) (Σ κ_0 (Σ κ_1 τ)))]
; Identity type reflexivity, transitivity and symmetry.
[-------------------------
(types Γ (id κ) (κ = κ))]
[(types Γ e_0 (κ_1 = κ_2)) (types Γ e_1 (κ_0 = κ_1))
-------------------------
(types Γ (e_0 ∘ e_1) (κ_0 = κ_2))]
[(types Γ e (κ_0 = κ_1))
-------------------------
(types Γ (sym e) (κ_1 = κ_0))]
; Use identity to cast from one sum to another
; Not at all sure of this rule
[(types Γ e_0 (κ_0 = κ_1)) (types Γ e_1 (Σ κ_0 τ))
-------------------------
(types Γ (cast e_0 e_1) (Σ κ_1 τ))]
; Experiment with axiom J
[(types ((x : (Σ κ_1 (κ_0 = κ_1))) p ...) e_0 (Σ κ_0 τ))
(types (p ...) e_1 (κ_0 = κ_1))
-------------------------
(types (p ...) (J e_0 κ_0 κ_1 e_1) (Σ κ_1 τ))]
; Some basic integer extras
[-------------------------
(types Γ integer Z)]
[(types Γ e_0 Z) (types Γ e_1 Z)
-------------------------
(types Γ (e_0 + e_1) Z)]
[(types Γ e_0 Z) (types Γ e_1 Z)
-------------------------
(types Γ (e_0 - e_1) Z)]
[(types Γ e_0 Z) (types Γ e_1 Z)
-------------------------
(types Γ (e_0 × e_1) Z)]
)
(define-extended-language cyl+stk cyl
(E hole
(absurd E)
(E e)
(fst E)
(snd E)
(case E (x e) (x e))
(κ ⊢ E)
(box κ E)
(T E)
(dup E)
(K E e) (K v E)
(let (x E) e)
(∀-comm E)
(Σ-comm E)
(v ∘ E) (E ∘ e)
(sym E)
(cast E e) (cast v E)
(E + e) (v + E)
(E - e) (v - E)
(E × e) (v × E)
)
#:binding-forms
(case E (x e #:refers-to x) (x e #:refers-to x))
(let (x E) e #:refers-to x)
)
(define-metafunction cyl+stk
add : integer integer -> integer
[(add integer_1 integer_2) ,(+ (term integer_1) (term integer_2))])
(define-metafunction cyl+stk
sub : integer integer -> integer
[(sub integer_1 integer_2) ,(- (term integer_1) (term integer_2))])
(define-metafunction cyl+stk
mul : integer integer -> integer
[(mul integer_1 integer_2) ,(* (term integer_1) (term integer_2))])
(define cyl-whnf
(reduction-relation cyl+stk #:domain e
(--> (in-hole E ((λ (x τ) e_0) e_1))
(in-hole E (substitute e_1 x e_0))
"→-subst")
(--> (in-hole E (fst (e_0 Δ e_1)))
(in-hole E e_0)
"×-fst")
(--> (in-hole E (snd (e_0 Δ e_1)))
(in-hole E e_1)
"×-snd")
(--> (in-hole E (case (inl τ e_0) (x_0 e_1) (x_1 e_2)))
(in-hole E (substitute e_1 x_0 e_0))
"+-case-inl")
(--> (in-hole E (case (inr τ e_0) (x_0 e_1) (x_1 e_2)))
(in-hole E (substitute e_2 x_1 e_0))
"+-case-inr")
(--> (in-hole E (T (κ ⊢ e)))
(in-hole E e)
"∀-T")
(--> (in-hole E (K (κ ⊢ e_0) (κ ⊢ e_1)))
(in-hole E (κ ⊢ (e_0 e_1)))
"∀-K")
(--> (in-hole E (dup (κ ⊢ e)))
(in-hole E (κ ⊢ (κ ⊢ e)))
"∀-dup")
(--> (in-hole E (∀-comm (κ_0 ⊢ (κ_1 ⊢ e))))
(in-hole E (κ_1 ⊢ (κ_0 ⊢ e)))
"∀-comm")
(--> (in-hole E (let (x (box κ e_0)) e_1))
(in-hole E (substitute e_1 x e_0))
"Σ-let")
(--> (in-hole E (Σ-comm (box κ_0 (box κ_1 e))))
(in-hole E (box κ_1 (box κ_0 e)))
"Σ-comm")
(--> (in-hole E ((id κ) ∘ (id κ)))
(in-hole E (id κ))
"=-compose")
(--> (in-hole E (sym (id κ)))
(in-hole E (id κ))
"=-sym")
(--> (in-hole E (cast (id κ) (box κ e)))
(in-hole E (box κ e))
"=-cast")
(--> (in-hole E (z_0 + z_1))
(in-hole E (add z_0 z_1))
"z-+")
(--> (in-hole E (z_0 - z_1))
(in-hole E (sub z_0 z_1))
"z--")
(--> (in-hole E (z_0 × z_1))
(in-hole E (mul z_0 z_1))
"z-*")
)
)
(render-language cyl)
(render-judgment-form types)
(render-reduction-relation cyl-whnf)
(judgment-holds
(types () (λ (x Z) x) (Z → Z))
τ)
(judgment-holds
(types () 4 τ)
τ)
(traces cyl-whnf (term (case (inl Z 0) (x 1) (x 2))))
(traces cyl-whnf (term (cast (sym (id 0)) (box 0 4))))
(test--> cyl-whnf
(term ((λ (x Z) x) 4)) (term 4))
(test--> cyl-whnf
(term (cast (id 0) (box 0 4))) (term (box 0 4)))