forked from TianhuaTao/direct-preference-optimization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preference_datasets.py
456 lines (381 loc) · 20.8 KB
/
preference_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
import datasets
import torch
from torch.utils.data import DataLoader, Dataset
from utils import get_local_dir, TemporarilySeededRandom
from torch.nn.utils.rnn import pad_sequence
from collections import defaultdict
import tqdm
import random
from bs4 import BeautifulSoup, NavigableString
import numpy as np
from typing import Dict, List, Optional, Iterator, Callable, Union, Tuple
def extract_anthropic_prompt(prompt_and_response):
"""Extract the anthropic prompt from a prompt and response pair."""
search_term = '\n\nAssistant:'
search_term_idx = prompt_and_response.rfind(search_term)
assert search_term_idx != -1, f"Prompt and response does not contain '{search_term}'"
return prompt_and_response[:search_term_idx + len(search_term)]
def strip_html_tags(html_string):
"""Strip HTML tags from a string, except for <code> tags (which contain real code in the StackExchange answers)."""
# Create a BeautifulSoup object
soup = BeautifulSoup(html_string, 'html.parser')
# Initialize an empty list to store the text
text = []
for element in soup.children:
if isinstance(element, NavigableString):
continue
if element.name == 'p':
text.append(''.join(child.string for child in element.children if isinstance(child, NavigableString)))
elif element.name == 'pre':
for code in element.find_all('code'):
text.append("<code>" + code.get_text() + "</code>")
elif element.name == 'code':
text.append("<code>" + element.get_text() + "</code>")
# Join the text together with newlines in between
text = "\n\n".join(text)
return text
def get_se(split, silent=False, cache_dir: str = None) -> Dict[str, Dict[str, Union[List[Tuple[int, int]], List[str], str]]]:
"""Load the StackExchange dataset from Huggingface, and return a dict of prompts and responses. See get_hh for the format.
We strip the HTML tags from the responses (except for <code> tags), and we add necessary newlines.
"""
print(f'Loading SE dataset ({split} split) from Huggingface...')
dataset = datasets.load_dataset('HuggingFaceH4/stack-exchange-preferences', cache_dir=cache_dir)['train']
print('done')
# shuffle the dataset and select 1% for test
dataset = dataset.shuffle(seed=42)
dataset = dataset.select(range(int(len(dataset) * 0.01))) if split == 'test' else dataset.select(
range(int(len(dataset) * 0.01), len(dataset)))
def strip_html(x):
x['question'] = strip_html_tags(x['question'])
for a in x['answers']:
a['text'] = strip_html_tags(a['text'])
return x
dataset = dataset.map(strip_html, num_proc=64)
data = defaultdict(dict)
for row in tqdm.tqdm(dataset, desc='Processing SE', disable=silent):
prompt = '\n\nHuman: ' + row['question'] + '\n\nAssistant:'
responses = [' ' + a['text'] for a in row['answers']]
scores = [a['pm_score'] for a in row['answers']]
pairs = []
for i in range(len(responses)):
for j in range(i + 1, len(responses)):
pairs.append((i, j) if scores[i] > scores[j] else (j, i))
data[prompt]['responses'] = responses
data[prompt]['pairs'] = pairs
data[prompt]['sft_target'] = max(responses, key=lambda x: scores[responses.index(x)])
return data
def get_shp(split: str, silent: bool = False, cache_dir: str = None) -> Dict[str, Dict[str, Union[List[Tuple[int, int]], List[str], str]]]:
"""Load the Stanford Human Preferences dataset from Huggingface and convert it to the necessary format. See hh for the format.
We filter preference pairs to only keep pairs where the score ratio is at least 2.
For this dataset, the sft_target is the response with the highest score.
"""
print(f'Loading SHP dataset ({split} split) from Huggingface...')
dataset = datasets.load_dataset('stanfordnlp/SHP', split=split, cache_dir=cache_dir)
print('done')
data = defaultdict(lambda: defaultdict(list))
for row in tqdm.tqdm(dataset, desc='Processing SHP', disable=silent):
prompt = '\n\nHuman: ' + row['history'] + '\n\nAssistant:'
responses = [' ' + row['human_ref_A'], ' ' + row['human_ref_B']]
scores = [row['score_A'], row['score_B']]
if prompt in data:
n_responses = len(data[prompt]['responses'])
else:
n_responses = 0
score_ratio = max(scores[0] / scores[1], scores[1] / scores[0])
if score_ratio < 2:
continue
# according to https://huggingface.co/datasets/stanfordnlp/SHP
data[prompt]['pairs'].append((n_responses, n_responses + 1) if row['labels'] == 1 else (n_responses + 1, n_responses))
data[prompt]['responses'].extend(responses)
data[prompt]['scores'].extend(scores)
for prompt in data:
data[prompt]['sft_target'] = max(data[prompt]['responses'], key=lambda x: data[prompt]['scores'][data[prompt]['responses'].index(x)])
del data[prompt]['scores']
return data
def get_ultrafeedback(split: str, silent: bool = False, cache_dir: str = None) -> Dict[str, Dict[str, Union[List[Tuple[int, int]], List[str], str]]]:
if split == 'test':
print(f'Ultrafeedback dataset does not have a test split; using the first 128 samples in train split instead')
print(f'Loading Ultrafeedback dataset (train split) from Huggingface...')
print('Repo: argilla/ultrafeedback-binarized-preferences-cleaned')
dataset = datasets.load_dataset('argilla/ultrafeedback-binarized-preferences-cleaned', split='train', cache_dir=cache_dir)
if split == 'test':
# get the first 128 samples in the train split
dataset = dataset.select(range(256))
elif split == 'train':
# get the rest of the train split
dataset = dataset.select(range(256, len(dataset)))
else:
raise ValueError(f"Unknown split '{split}'")
print('done')
def split_prompt_and_responses(ex):
prompt = '\n\nHuman: ' + ex['prompt'] + '\n\nAssistant:'
assert len(ex['chosen']) == 2 , f"Chosen response does not have length 2: {ex['chosen']}"
assert len(ex['rejected']) == 2, f"Rejected response does not have length 2: {ex['rejected']}"
assert ex['chosen'][0]['role'] == 'user' and ex['chosen'][1]['role'] == 'assistant', f"Chosen response does not have correct roles: {ex['chosen']}"
assert ex['rejected'][0]['role'] == 'user' and ex['rejected'][1]['role'] == 'assistant', f"Rejected response does not have correct roles: {ex['rejected']}"
chosen_response = ex['chosen'][1]['content']
# only keep the part before the first "</s>"
chosen_response = chosen_response.split("</s>")[0]
rejected_response = ex['rejected'][1]['content']
# only keep the part before the first "</s>"
rejected_response = rejected_response.split("</s>")[0]
return prompt, chosen_response, rejected_response
data = defaultdict(lambda: defaultdict(list))
for row in tqdm.tqdm(dataset, desc='Processing Ultrafeedback', disable=silent):
prompt, chosen, rejected = split_prompt_and_responses(row)
responses = [chosen, rejected]
n_responses = len(data[prompt]['responses'])
data[prompt]['pairs'].append((n_responses, n_responses + 1))
data[prompt]['responses'].extend(responses)
data[prompt]['sft_target'] = chosen
return data
def get_hh(split: str, silent: bool = False, cache_dir: str = None) -> Dict[str, Dict[str, Union[List[Tuple[int, int]], List[str], str]]]:
"""Load the Anthropic Helpful-Harmless dataset from Huggingface and convert it to the necessary format.
The dataset is converted to a dictionary with the following structure:
{
'prompt1': {
'responses': List[str],
'pairs': List[Tuple[int, int]],
'sft_target': str
},
'prompt2': {
...
},
}
Prompts should be structured as follows:
\n\nHuman: <prompt>\n\nAssistant:
Multiple turns are allowed, but the prompt should always start with \n\nHuman: and end with \n\nAssistant:.
For this dataset, the sft_target is just the chosen response.
"""
print(f'Loading HH dataset ({split} split) from Huggingface...')
dataset = datasets.load_dataset('Anthropic/hh-rlhf', split=split, cache_dir=cache_dir)
print('done')
def split_prompt_and_responses(ex):
prompt = extract_anthropic_prompt(ex['chosen'])
chosen_response = ex['chosen'][len(prompt):]
rejected_response = ex['rejected'][len(prompt):]
return prompt, chosen_response, rejected_response
data = defaultdict(lambda: defaultdict(list))
for row in tqdm.tqdm(dataset, desc='Processing HH', disable=silent):
prompt, chosen, rejected = split_prompt_and_responses(row)
responses = [chosen, rejected]
n_responses = len(data[prompt]['responses'])
data[prompt]['pairs'].append((n_responses, n_responses + 1))
data[prompt]['responses'].extend(responses)
data[prompt]['sft_target'] = chosen
return data
def get_dataset(name: str, split: str, silent: bool = False, cache_dir: str = None):
"""Load the given dataset by name. Supported by default are 'shp', 'hh', and 'se'."""
if name == 'shp':
data = get_shp(split, silent=silent, cache_dir=cache_dir)
elif name == 'hh':
data = get_hh(split, silent=silent, cache_dir=cache_dir)
elif name == 'se':
data = get_se(split, silent=silent, cache_dir=cache_dir)
elif name == 'ultrafeedback':
data = get_ultrafeedback(split, silent=silent, cache_dir=cache_dir)
else:
raise ValueError(f"Unknown dataset '{name}'")
assert set(list(data.values())[0].keys()) == {'responses', 'pairs', 'sft_target'}, \
f"Unexpected keys in dataset: {list(list(data.values())[0].keys())}"
return data
def get_collate_fn(tokenizer) -> Callable[[List[Dict]], Dict[str, Union[List, torch.Tensor]]]:
"""Returns a collate function for the given tokenizer.
The collate function takes a list of examples (dicts, where values are lists of
ints [tokens] or strings [the original texts]) and returns a batch of examples,
PyTorch tensors padded to the maximum length. Strings are passed through."""
def collate_fn(batch):
# first, pad everything to the same length
padded_batch = {}
for k in batch[0].keys():
if k.endswith('_input_ids') or k.endswith('_attention_mask') or k.endswith('_labels'):
if 'prompt' in k: # adapted from https://stackoverflow.com/questions/73256206
to_pad = [torch.LongTensor(ex[k][::-1]) for ex in batch]
else:
to_pad = [torch.LongTensor(ex[k]) for ex in batch]
if k.endswith('_input_ids'):
padding_value = tokenizer.pad_token_id
elif k.endswith('_labels'):
padding_value = -100
elif k.endswith('_attention_mask'):
padding_value = 0
else:
raise ValueError(f"Unexpected key in batch '{k}'")
padded_batch[k] = pad_sequence(to_pad, batch_first=True, padding_value=padding_value)
if 'prompt' in k: # for the prompt, flip back so padding is on left side
padded_batch[k] = padded_batch[k].flip(dims=[1])
else:
padded_batch[k] = [ex[k] for ex in batch]
return padded_batch
return collate_fn
def tokenize_batch_element(prompt: str, chosen: str, rejected: str, truncation_mode: str, tokenizer, max_length: int, max_prompt_length: int) -> Dict:
"""Tokenize a single batch element.
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation
in case the prompt + chosen or prompt + rejected responses is/are too long. First
we truncate the prompt; if we're still too long, we truncate the chosen/rejected.
We also create the labels for the chosen/rejected responses, which are of length equal to
the sum of the length of the prompt and the chosen/rejected response, with -100 for the
prompt tokens.
"""
chosen_tokens = tokenizer(chosen, add_special_tokens=False)
rejected_tokens = tokenizer(rejected, add_special_tokens=False)
prompt_tokens = tokenizer(prompt, add_special_tokens=False)
assert len(chosen_tokens) > 0, f"Chosen response is empty: {chosen}"
assert len(rejected_tokens) > 0, f"Rejected response is empty: {rejected}"
# assert tokenizer.eos_token_id not in prompt_tokens['input_ids'], f"Prompt contains EOS token: {prompt}"
if tokenizer.eos_token_id in prompt_tokens['input_ids']:
print(f">>> Prompt contains EOS token:")
print("-------")
print(prompt)
print("-------")
# assert tokenizer.eos_token_id not in chosen_tokens['input_ids'], f"Chosen response contains EOS token: {chosen}"
if tokenizer.eos_token_id in chosen_tokens['input_ids']:
print(f">>> Chosen response contains EOS token:")
print("-------")
print(chosen)
print("-------")
# assert tokenizer.eos_token_id not in rejected_tokens['input_ids'], f"Rejected response contains EOS token: {rejected}"
if tokenizer.eos_token_id in rejected_tokens['input_ids']:
print(f">>> Rejected response contains EOS token:")
print("-------")
print(rejected)
print("-------")
chosen_tokens['input_ids'].append(tokenizer.eos_token_id)
chosen_tokens['attention_mask'].append(1)
rejected_tokens['input_ids'].append(tokenizer.eos_token_id)
rejected_tokens['attention_mask'].append(1)
longer_response_length = max(len(chosen_tokens['input_ids']), len(rejected_tokens['input_ids']))
# if combined sequence is too long, truncate the prompt
if len(prompt_tokens['input_ids']) + longer_response_length > max_length:
if truncation_mode == 'keep_start':
prompt_tokens = {k: v[:max_prompt_length] for k, v in prompt_tokens.items()}
elif truncation_mode == 'keep_end':
prompt_tokens = {k: v[-max_prompt_length:] for k, v in prompt_tokens.items()}
else:
raise ValueError(f'Unknown truncation mode: {truncation_mode}')
# if that's still too long, truncate the response
if len(prompt_tokens['input_ids']) + longer_response_length > max_length:
chosen_tokens = {k: v[:max_length - max_prompt_length] for k, v in chosen_tokens.items()}
rejected_tokens = {k: v[:max_length - max_prompt_length] for k, v in rejected_tokens.items()}
# Create labels
chosen_sequence_tokens = {k: prompt_tokens[k] + chosen_tokens[k] for k in chosen_tokens}
rejected_sequence_tokens = {k: prompt_tokens[k] + rejected_tokens[k] for k in rejected_tokens}
chosen_sequence_tokens['labels'] = chosen_sequence_tokens['input_ids'][:]
chosen_sequence_tokens['labels'][:len(prompt_tokens['input_ids'])] = [-100] * len(prompt_tokens['input_ids'])
rejected_sequence_tokens['labels'] = rejected_sequence_tokens['input_ids'][:]
rejected_sequence_tokens['labels'][:len(prompt_tokens['input_ids'])] = [-100] * len(prompt_tokens['input_ids'])
batch = {}
batch['prompt'] = prompt
batch['chosen'] = prompt + chosen
batch['rejected'] = prompt + rejected
batch['chosen_response_only'] = chosen
batch['rejected_response_only'] = rejected
for k, toks in {'chosen': chosen_sequence_tokens, 'rejected': rejected_sequence_tokens, 'prompt': prompt_tokens}.items():
for type_key, tokens in toks.items():
if type_key == 'token_type_ids':
continue
batch[f'{k}_{type_key}'] = tokens
return batch
def get_batch_iterator(names: List[str],
tokenizer,
split: str = 'train',
batch_size: int = 1,
shuffle: bool = True,
max_length: int = 512,
max_prompt_length: int = 128,
sft_mode: bool = False,
n_epochs: Optional[int] = None,
n_examples: Optional[int] = None,
seed:int = 0,
silent: bool = False,
cache_dir: Optional[str] = None) -> Iterator[Dict]:
"""Get an iterator over batches of data. Stops after n_epochs or n_examples, whichever comes first.
Args:
names: Names of datasets to use.
tokenizer: Tokenizer to use.
split: Which split to use.
batch_size: Batch size.
shuffle: Whether to shuffle the data after each epoch.
max_length: Maximum length of the combined prompt + response.
max_prompt_length: Maximum length of the prompt.
sft_mode: Whether to use SFT mode (i.e., return sft_target instead of chosen/rejected). In sft mode, we just return chosen_input_ids, but they contain the sft_target.
n_epochs: Number of epochs to run for. This or n_examples must be specified.
n_examples: Number of examples to run for. This or n_epochs must be specified.
seed: Random seed.
silent: Whether to silence the progress bar(s).
cache_dir: Directory to cache the datasets in.
"""
assert n_epochs is not None or n_examples is not None, "Must specify either n_epochs or n_examples"
if silent:
datasets.logging.disable_progress_bar()
datasets.logging.set_verbosity_error()
with TemporarilySeededRandom(seed):
permutation_seeds = iter(np.random.randint(0, 2**32, size=1000000))
flat_data = []
for name in names:
truncation_mode = 'keep_end' if name == 'hh' else 'keep_start'
for prompt, data in get_dataset(name, split, silent=silent, cache_dir=cache_dir).items():
flat_data.append((prompt, data['responses'], data['pairs'], data['sft_target'], truncation_mode))
collate_fn = get_collate_fn(tokenizer)
if n_epochs is not None and n_examples is None:
print(f'>>> Total number of examples ({split}): {n_epochs * len(flat_data)}')
elif n_examples is not None and n_epochs is None:
print(f'>>> Total number of examples ({split}): {n_examples}')
else:
print(f'>>> Total number of examples ({split}): {min(n_epochs * len(flat_data), n_examples)}')
epoch_idx = 0
example_idx = 0
done = False
while True:
if n_epochs is not None and epoch_idx >= n_epochs:
if not silent:
print(f'Finished generating {n_epochs} epochs on {split} split')
break
if shuffle:
with TemporarilySeededRandom(next(permutation_seeds)):
random.shuffle(flat_data)
batch = []
for prompt, responses, pairs, sft_target, truncation_mode in flat_data:
if done:
break
if sft_mode:
batch_element = tokenize_batch_element(prompt, sft_target, sft_target, truncation_mode, tokenizer, max_length, max_prompt_length)
batch_element = {k: v for k, v in batch_element.items() if 'rejected' not in k}
batch.append(batch_element)
example_idx += 1
if len(batch) == batch_size:
yield collate_fn(batch)
if n_examples is not None and example_idx >= n_examples:
if not silent:
print(f'Finished generating {n_examples} examples on {split} split')
done = True
batch = []
else:
for p in pairs:
if done:
break
batch_element = tokenize_batch_element(prompt, responses[p[0]], responses[p[1]], truncation_mode, tokenizer, max_length, max_prompt_length)
batch.append(batch_element)
example_idx += 1
if len(batch) == batch_size:
yield collate_fn(batch)
if n_examples is not None and example_idx >= n_examples:
if not silent:
print(f'FINISHED {n_examples} EXAMPLES on {split} split')
done = True
batch = []
if done:
break
epoch_idx += 1
def strings_match_up_to_spaces(str_a: str, str_b: str) -> bool:
"""Returns True if str_a and str_b match up to spaces, False otherwise."""
for idx in range(min(len(str_a), len(str_b)) - 2):
if str_a[idx] != str_b[idx]:
if str_a[idx] != ' ' and str_b[idx] != ' ':
return False
else:
if str_a[idx] == ' ':
str_a = str_a[:idx] + str_a[idx + 1:]
else:
str_b = str_b[:idx] + str_b[idx + 1:]
return True