forked from gnboorse/centipede
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoku_test.go
179 lines (160 loc) · 5.61 KB
/
sudoku_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Copyright 2022 Gabriel Boorse
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package centipede
import (
"context"
"strconv"
"testing"
"github.com/stretchr/testify/assert"
)
// Sudoku implementation of a Sudoku puzzle solver. The particular puzzle being
// solved here has been taken straight from the wikipedia page.
// Puzzle: https://en.wikipedia.org/wiki/Sudoku#/media/File:Sudoku_Puzzle_by_L2G-20050714_standardized_layout.svg
// Solution: https://en.wikipedia.org/wiki/Sudoku#/media/File:Sudoku_Puzzle_by_L2G-20050714_solution_standardized_layout.svg
// In this solution, cells are labeled by the 3x3 sector (out of the 9 large boxes) as a letter in the range A-I,
// and an integer in the range 1-9 indicating the cell's position in the sector.
// For reference, here is an example grid:
// [A1 A2 A3 B1 B2 B3 C1 C2 C3]
// [A4 A5 A6 B4 B5 B6 C4 C5 C6]
// [A7 A8 A9 B7 B8 B9 C7 C8 C9]
// [D1 D2 D3 E1 E2 E3 F1 F2 F3]
// [D4 D5 D6 E4 E5 E6 F4 F5 F6]
// [D7 D8 D9 E7 E8 E9 F7 F8 F9]
// [G1 G2 G3 H1 H2 H3 I1 I2 I3]
// [G4 G5 G6 H4 H5 H6 I4 I5 I6]
// [G7 G8 G9 H7 H8 H9 I7 I8 I9]
// This solution enforces Arc consistency on all binary constraints in the problem,
// resulting in a very fast solve
func TestSudoku(t *testing.T) {
// initialize variables
vars := make(Variables[int], 0)
constraints := make(Constraints[int], 0)
letters := [9]string{"A", "B", "C", "D", "E", "F", "G", "H", "I"}
tenDomain := IntRange(1, 10)
// configure variables and block constraints
for _, letter := range letters {
letterVars := make(VariableNames, 0)
for i := 1; i <= 9; i++ {
varName := VariableName(letter + strconv.Itoa(i))
// add vars like A1, A2, A3 ... A9, B1, B2, B3 ... B9 ... I9
vars = append(vars, NewVariable(varName, tenDomain))
letterVars = append(letterVars, varName)
}
// for each block, add uniqueness constraint within block
constraints = append(constraints, AllUnique[int](letterVars...)...)
}
// add horizontal constraints
rowLetterSets := [3][3]string{{"A", "B", "C"}, {"D", "E", "F"}, {"G", "H", "I"}}
rowNumberSets := [3][3]int{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
for _, letterSet := range rowLetterSets {
for _, numberSet := range rowNumberSets {
rowVarNames := make(VariableNames, 0)
for _, letter := range letterSet {
for _, number := range numberSet {
varName := VariableName(letter + strconv.Itoa(number))
rowVarNames = append(rowVarNames, varName)
}
}
// add uniqueness constraints
constraints = append(constraints, AllUnique[int](rowVarNames...)...)
}
}
// add vertical constraints
columnLetterSets := [3][3]string{{"A", "D", "G"}, {"B", "E", "H"}, {"C", "F", "I"}}
columnNumberSets := [3][3]int{{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}
for _, letterSet := range columnLetterSets {
for _, numberSet := range columnNumberSets {
columnVarNames := make(VariableNames, 0)
for _, letter := range letterSet {
for _, number := range numberSet {
varName := VariableName(letter + strconv.Itoa(number))
columnVarNames = append(columnVarNames, varName)
}
}
// add uniqueness constraints
constraints = append(constraints, AllUnique[int](columnVarNames...)...)
}
}
// set values already known
vars.SetValue("A1", 5)
vars.SetValue("A2", 3)
vars.SetValue("A4", 6)
vars.SetValue("A8", 9)
vars.SetValue("A9", 8)
vars.SetValue("B2", 7)
vars.SetValue("B4", 1)
vars.SetValue("B5", 9)
vars.SetValue("B6", 5)
vars.SetValue("C8", 6)
vars.SetValue("D1", 8)
vars.SetValue("D4", 4)
vars.SetValue("D7", 7)
vars.SetValue("E2", 6)
vars.SetValue("E4", 8)
vars.SetValue("E6", 3)
vars.SetValue("E8", 2)
vars.SetValue("F3", 3)
vars.SetValue("F6", 1)
vars.SetValue("F9", 6)
vars.SetValue("G2", 6)
vars.SetValue("H4", 4)
vars.SetValue("H5", 1)
vars.SetValue("H6", 9)
vars.SetValue("H8", 8)
vars.SetValue("I1", 2)
vars.SetValue("I2", 8)
vars.SetValue("I6", 5)
vars.SetValue("I8", 7)
vars.SetValue("I9", 9)
// create solver
solver := NewBackTrackingCSPSolver(vars, constraints)
// simplify variable domains following initial assignment
solver.State.MakeArcConsistent(context.TODO())
success, err := solver.Solve(context.TODO()) // run the solution
assert.Nil(t, err)
assert.True(t, success)
// check that we have a valid sudoku solution
for _, letterSet := range rowLetterSets {
for _, numberSet := range rowNumberSets {
sum := 0
for _, letter := range letterSet {
for _, number := range numberSet {
varName := VariableName(letter + strconv.Itoa(number))
variable := solver.State.Vars.Find(varName)
sum += variable.Value
}
}
assert.Equal(t, 45, sum)
}
}
for _, letterSet := range columnLetterSets {
for _, numberSet := range columnNumberSets {
sum := 0
for _, letter := range letterSet {
for _, number := range numberSet {
varName := VariableName(letter + strconv.Itoa(number))
variable := solver.State.Vars.Find(varName)
sum += variable.Value
}
}
assert.Equal(t, 45, sum)
}
}
for _, letter := range letters {
sum := 0
for num := 1; num <= 9; num++ {
varName := VariableName(letter + strconv.Itoa(num))
variable := solver.State.Vars.Find(varName)
sum += variable.Value
}
assert.Equal(t, 45, sum)
}
}