-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathvoting_eval_modelnet.py
executable file
·121 lines (102 loc) · 4.63 KB
/
voting_eval_modelnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import print_function
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from util.data_util import ModelNet40
from model.GDANet_cls import GDANET
import numpy as np
from torch.utils.data import DataLoader
from util.util import cal_loss, IOStream
import sklearn.metrics as metrics
class PointcloudScale(object):
def __init__(self, scale_low=2. / 3., scale_high=3. / 2., trans_low=-0.2, trans_high=0.2, trans_open=True):
self.scale_low = scale_low
self.scale_high = scale_high
self.trans_low = trans_low
self.trans_high = trans_high
self.trans_open = trans_open # whether add translation during voting or not
def __call__(self, pc):
bsize = pc.size()[0]
for i in range(bsize):
xyz1 = np.random.uniform(low=self.scale_low, high=self.scale_high, size=[3])
xyz2 = np.random.uniform(low=self.trans_low, high=self.trans_high, size=[3])
scales = torch.from_numpy(xyz1).float().cuda()
trans = torch.from_numpy(xyz2).float().cuda() if self.trans_open else 0
pc[i, :, 0:3] = torch.mul(pc[i, :, 0:3], scales)+trans
return pc
def test(args, io):
test_loader = DataLoader(ModelNet40(partition='test', num_points=args.num_points), num_workers=5,
batch_size=args.test_batch_size, shuffle=False, drop_last=False)
device = torch.device("cuda" if args.cuda else "cpu")
NUM_PEPEAT = 300
NUM_VOTE = 10
# Try to load models
model = GDANET().to(device)
model = nn.DataParallel(model)
model.load_state_dict(torch.load(args.model_path))
model = model.eval()
best_acc = 0
pointscale=PointcloudScale(scale_low=2. / 3., scale_high=3. / 2., trans_low=-0.2, trans_high=0.2, trans_open=True)
for i in range(NUM_PEPEAT):
test_true = []
test_pred = []
for data, label in test_loader:
data, label = data.to(device), label.to(device).squeeze()
pred = 0
for v in range(NUM_VOTE):
new_data = data
batch_size = data.size()[0]
if v > 0:
new_data.data = pointscale(new_data.data)
with torch.no_grad():
pred += F.softmax(model(new_data.permute(0, 2, 1)), dim=1)
pred /= NUM_VOTE
label = label.view(-1)
pred_choice = pred.max(dim=1)[1]
test_true.append(label.cpu().numpy())
test_pred.append(pred_choice.detach().cpu().numpy())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
test_acc = metrics.accuracy_score(test_true, test_pred)
if test_acc > best_acc:
best_acc = test_acc
outstr = 'Voting %d, test acc: %.6f,' % (i, test_acc*100)
io.cprint(outstr)
final_outstr = 'Final voting result test acc: %.6f,' % (best_acc * 100)
io.cprint(final_outstr)
def _init_():
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('checkpoints/'+args.exp_name):
os.makedirs('checkpoints/'+args.exp_name)
os.system('cp voting_eval_modelnet.py checkpoints'+'/'+args.exp_name+'/'+'voting_eval_modelnet.py.backup')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='3D Object Classification')
parser.add_argument('--exp_name', type=str, default='GDANet', metavar='N',
help='Name of the experiment')
parser.add_argument('--test_batch_size', type=int, default=16, metavar='batch_size',
help='Size of batch)')
parser.add_argument('--no_cuda', type=bool, default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--num_points', type=int, default=1024,
help='num of points to use')
parser.add_argument('--model_path', type=str, default='', metavar='N',
help='Pretrained model path')
parser.add_argument('--trans_open', type=bool, default=True, metavar='N',
help='enables input translation during voting')
args = parser.parse_args()
_init_()
io = IOStream('checkpoints/' + args.exp_name + '/%s_voting.log' % (args.exp_name))
io.cprint(str(args))
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
io.cprint('Using GPU')
torch.cuda.manual_seed(args.seed)
else:
io.cprint('Using CPU')
test(args, io)