diff --git a/tests/data/notebooks/inputs/ipynb_py/World population.ipynb b/tests/data/notebooks/inputs/ipynb_py/World population.ipynb deleted file mode 100644 index a8bae7d5a..000000000 --- a/tests/data/notebooks/inputs/ipynb_py/World population.ipynb +++ /dev/null @@ -1,1475 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# A quick insight at world population\n", - "\n", - "## Collecting population data\n", - "\n", - "In the below we retrieve population data from the\n", - "[World Bank](http://www.worldbank.org/)\n", - "using the [wbdata](https://github.com/OliverSherouse/wbdata) python package" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pandas as pd\n", - "import wbdata as wb\n", - "\n", - "pd.options.display.max_rows = 6\n", - "pd.options.display.max_columns = 20" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Corresponding indicator is found using search method - or, directly,\n", - "the World Bank site." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SP.POP.TOTL\tPopulation, total\n" - ] - } - ], - "source": [ - "wb.search_indicators('Population, total') # SP.POP.TOTL\n", - "# wb.search_indicators('area')\n", - "# => https://data.worldbank.org/indicator is easier to use" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we download the population data" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Population, totalSurface area (sq. km)Land area (sq. km)Arable land (% of land area)
countrydate
Afghanistan1960-01-018996351.0NaNNaNNaN
1961-01-019166764.0652860.0652860.011.717673
1962-01-019345868.0652860.0652860.011.794259
..................
Zimbabwe2015-01-0115777451.0390760.0386850.010.339925
2016-01-0116150362.0390760.0386850.0NaN
2017-01-0116529904.0390760.0386850.0NaN
\n", - "

15312 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " Population, total Surface area (sq. km) \\\n", - "country date \n", - "Afghanistan 1960-01-01 8996351.0 NaN \n", - " 1961-01-01 9166764.0 652860.0 \n", - " 1962-01-01 9345868.0 652860.0 \n", - "... ... ... \n", - "Zimbabwe 2015-01-01 15777451.0 390760.0 \n", - " 2016-01-01 16150362.0 390760.0 \n", - " 2017-01-01 16529904.0 390760.0 \n", - "\n", - " Land area (sq. km) Arable land (% of land area) \n", - "country date \n", - "Afghanistan 1960-01-01 NaN NaN \n", - " 1961-01-01 652860.0 11.717673 \n", - " 1962-01-01 652860.0 11.794259 \n", - "... ... ... \n", - "Zimbabwe 2015-01-01 386850.0 10.339925 \n", - " 2016-01-01 386850.0 NaN \n", - " 2017-01-01 386850.0 NaN \n", - "\n", - "[15312 rows x 4 columns]" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "indicators = {'SP.POP.TOTL': 'Population, total',\n", - " 'AG.SRF.TOTL.K2': 'Surface area (sq. km)',\n", - " 'AG.LND.TOTL.K2': 'Land area (sq. km)',\n", - " 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'}\n", - "data = wb.get_dataframe(indicators, convert_date=True).sort_index()\n", - "data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "World is one of the countries" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Population, totalSurface area (sq. km)Land area (sq. km)Arable land (% of land area)
date
1960-01-013.032160e+09NaNNaNNaN
1961-01-013.073369e+09134043190.4129721455.49.693086
1962-01-013.126510e+09134043190.4129721435.49.726105
...............
2015-01-017.357559e+09134325130.2129732901.810.991288
2016-01-017.444157e+09134325130.2129733172.7NaN
2017-01-017.530360e+09134325130.2129733172.7NaN
\n", - "

58 rows × 4 columns

\n", - "
" - ], - "text/plain": [ - " Population, total Surface area (sq. km) Land area (sq. km) \\\n", - "date \n", - "1960-01-01 3.032160e+09 NaN NaN \n", - "1961-01-01 3.073369e+09 134043190.4 129721455.4 \n", - "1962-01-01 3.126510e+09 134043190.4 129721435.4 \n", - "... ... ... ... \n", - "2015-01-01 7.357559e+09 134325130.2 129732901.8 \n", - "2016-01-01 7.444157e+09 134325130.2 129733172.7 \n", - "2017-01-01 7.530360e+09 134325130.2 129733172.7 \n", - "\n", - " Arable land (% of land area) \n", - "date \n", - "1960-01-01 NaN \n", - "1961-01-01 9.693086 \n", - "1962-01-01 9.726105 \n", - "... ... \n", - "2015-01-01 10.991288 \n", - "2016-01-01 NaN \n", - "2017-01-01 NaN \n", - "\n", - "[58 rows x 4 columns]" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.loc['World']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Can we classify over continents?" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['Iran, Islamic Rep.', 'Congo, Dem. Rep.', 'Germany', 'Vietnam',\n", - " 'Egypt, Arab Rep.', 'Central Europe and the Baltics', 'Philippines',\n", - " 'Ethiopia', 'Japan', 'Mexico', 'Russian Federation', 'Bangladesh',\n", - " 'Nigeria', 'Pakistan', 'Brazil', 'Indonesia', 'United States',\n", - " 'Euro area', 'North America',\n", - " 'Middle East & North Africa (IDA & IBRD countries)',\n", - " 'Middle East & North Africa (excluding high income)', 'Arab World',\n", - " 'Europe & Central Asia (excluding high income)',\n", - " 'Middle East & North Africa',\n", - " 'Europe & Central Asia (IDA & IBRD countries)',\n", - " 'Fragile and conflict affected situations', 'European Union',\n", - " 'IDA blend', 'Latin America & Caribbean (excluding high income)',\n", - " 'Latin America & the Caribbean (IDA & IBRD countries)',\n", - " 'Latin America & Caribbean', 'Low income',\n", - " 'Heavily indebted poor countries (HIPC)', 'Pre-demographic dividend',\n", - " 'Europe & Central Asia', 'Least developed countries: UN classification',\n", - " 'Sub-Saharan Africa (excluding high income)',\n", - " 'Sub-Saharan Africa (IDA & IBRD countries)', 'Sub-Saharan Africa',\n", - " 'IDA only', 'Post-demographic dividend', 'High income', 'OECD members',\n", - " 'India', 'China', 'IDA total', 'South Asia (IDA & IBRD)', 'South Asia',\n", - " 'East Asia & Pacific (IDA & IBRD countries)',\n", - " 'East Asia & Pacific (excluding high income)',\n", - " 'Late-demographic dividend', 'East Asia & Pacific',\n", - " 'Upper middle income', 'Lower middle income',\n", - " 'Early-demographic dividend', 'IBRD only', 'Middle income',\n", - " 'Low & middle income', 'IDA & IBRD total', 'World'],\n", - " dtype='object', name='country')" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna(\n", - ").sort_values().tail(60).index.get_level_values('country')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Extract zones manually (in order of increasing population)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "zones = ['North America', 'Middle East & North Africa',\n", - " 'Latin America & Caribbean', 'Europe & Central Asia',\n", - " 'Sub-Saharan Africa', 'South Asia',\n", - " 'East Asia & Pacific'][::-1]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And extract population information (and check total is right)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "population = data.loc[zones]['Population, total'].swaplevel().unstack()\n", - "population = population[zones]\n", - "assert all(data.loc['World']['Population, total'] == population.sum(axis=1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Stacked area plot with matplotlib" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAGoCAYAAABmACX+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xlc1NX6wPHPdxj2fVNEUVDEfb1Uaq4393K3XDJDUzMzr9dcsq7lUm65e6/aTRSzRbPUn1m5S26ZS6Ii4IIgLgiyDesAw8zvD2KuCCquw8jzfr14vZjvcs4zX8J45pzzHMVgMCCEEEIIIYQQFZHK1AEIIYQQQgghhKlIQiSEEEIIIYSosCQhEkIIIYQQQlRYkhAJIYQQQgghKixJiIQQQgghhBAVliREQgghhBBCiApLEiIhhBBCCCFEhSUJkRBCCCGEEKLCkoRICCGEEEIIUWFJQiSEEEIIIYSosCQhEkIIIYQQQlRYalMH8CgURVEAbyDD1LEIIYQQQgghTM4RuGEwGAxlvcGsEyIKk6Frpg5CCCGEEEIIUW5UA66X9WJzT4gyAK5evYqTk5OpYxFCCCGEEEKYSHp6Oj4+PvCAs8fMPSECwMnJSRIiIYQQQgghxAOTogpCCCGEEEKICksSIiGEEEIIIUSFJQmREEIIIYQQosJ6JtYQ3U9BQQH5+fmmDkMIcQ9WVlaoVPIZjRBCCCGermc6ITIYDNy8eZO0tDRThyKEuA+VSoWfnx9WVlamDkUIIYQQFcgznRAVJUOVKlXCzs6Own1chRDljV6v58aNG8THx1O9enX5XRVCCCHEU/PMJkQFBQXGZMjd3d3U4Qgh7sPT05MbN26g0+mwtLQ0dThCCCGEqCCe2Qn7RWuG7OzsTByJEKIsiqbKFRQUmDgSIYQQQlQkz2xCVESm3ghhHuR3VQghhBCm8MwnREIIIYQQQghxN5IQiSeqffv2jB8/3tRhPFGKorB161bj66ioKFq0aIGNjQ1NmzYlNjYWRVEICwszYZRCCCGEEKI0z2xRhXvx/eDnp9ZX7NyXH/ieoKAg1q1bV+J4ly5d2LFjxyPHFBoaSocOHUhNTcXFxaVM99SpU4eYmBhiYmKoWrVqmfvavHnzY1kgv2PHDqZOnUpUVBRubm706tWLFStW3Pe+25+lWq3Gx8eHvn37MmPGDOzt7R85LoD4+HhcXV2Nrz/55BPs7e05f/48Dg4OuLi4EB8fj4eHx2PpTwghhBBCPD4yQlROde3alfj4+GJf3333nUliOXToEFqtlldffZWQkJAHutfNzQ1HR8dH6l+r1dK3b18aN27M2bNn+fnnn2natGmZ7y96lpcvX+bTTz9lxYoVTJw48ZFiup2XlxfW1tbG19HR0bRu3ZoaNWrg7u6OhYUFXl5eqNUV8vMHIYQQQohyTRKicsra2hovL69iX7ePQixatIhGjRphb2+Pj48PY8aMITMz03j+ypUr9OjRA1dXV+zt7WnQoAG//PILsbGxdOjQAQBXV1cURSEoKOiesQQHBzN48GDeeOMN1qxZg8FgKHZ+xYoV1K5dGxsbGypXrkz//v2N5+6cMvf1118TGBiIo6MjXl5eDB48mMTExPs+DwsLC15//XX8/f1p2rQpo0aNuu89RYqepY+PD4MHD+b11183TnErKCjgrbfews/PD1tbW+rUqcPSpUtLtLFmzRoaNGiAtbU1VapUYezYscZzt0+ZUxSFkydPMnPmTBRFYfr06aVOmTt37hwvv/wyTk5OODo60qZNG6Kjo8v8noQQQgghxOMhH1mbKZVKxbJly/D19SUmJoYxY8YwefJk4zSyd999l7y8PA4cOIC9vT0RERE4ODjg4+PDjz/+SL9+/Th//jxOTk7Y2tretZ+MjAw2bdrEH3/8Qd26dcnKyjJOuQM4ceIE48aNY/369bRq1YqUlBQOHjx41/by8vKYNWsWderUITExkX/+858EBQXxyy+/3PUeGxsbunTpwuTJkwkMDMTNze0hn1ohW1tbY1l2vV5PtWrV+P777/Hw8ODIkSOMGjWKKlWq8NprrwGwcuVKJkyYwNy5c+nWrRsajYbDhw+X2nZ8fDwdO3aka9euTJw4EQcHB5KSkopdc/36ddq2bUv79u3Zt28fTk5OHD58GJ1O90jvSwghhBDiaSvIyMPC0crUYTwSSYjKqe3bt+Pg4FDs2JQpU5g2bRpAsVEXPz8/Zs2axTvvvGNMiOLi4ujXrx+NGjUCoGbNmsbrixKKSpUq3XcN0YYNG6hduzYNGjQAYODAgQQHBxsTori4OOzt7XnllVdwdHSkRo0aNGvW7K7tDR8+3Ph9zZo1WbZsGc8//zyZmZkl3m+RGTNmcOrUKQYNGkS7du3YuXMn3t7eAIwdO5YrV67w008/3fN9FDl27BjffvstL730EgCWlpbMmDHDeN7Pz48jR47w/fffGxOiTz/9lPfff59//OMfxuuee+65Utsvmhrn4OCAl5cXQImE6D//+Q/Ozs5s2LDBuL4qICCgTPELIYQQQpiaLi2XnLNJ5Jy9hS45B+9pLU0d0iORhKic6tChAytXrix27PaRkf379zN79mwiIiJIT09Hp9Oh1WrJysrC3t6ecePG8c4777Br1y46duxIv379aNy48QPHERwczJAhQ4yvhwwZQtu2bUlLS8PFxYVOnTpRo0YNatasSdeuXenatSt9+vS564a4p06dYvr06YSFhZGSkoJerwcKE6v69euXuD41NZU5c+awefNmunfvjkql4sUXX2TXrl3Url2b8PBwunXrds/3UJRc6nQ68vPz6dWrF8uXLzeeX7VqFatXr+bKlSvk5OSQl5dnXKOUmJjIjRs3jAnU4xAWFkabNm0eS7EJIYQQQoin4fYkKO9qBvy1gkJlZ/7phKwhKqfs7e3x9/cv9lWUEF25coXu3bvTsGFDfvzxR06ePMl//vMfAONUsBEjRnD58mXeeOMNzp49S2BgYLEkoCwiIiL4448/mDx5Mmq1GrVaTYsWLcjJyTEWeHB0dOTPP//ku+++o0qVKnz88cc0adKEtLS0Eu1lZWXRuXNnHBwc+Prrrzl+/DhbtmwBCqfSleb8+fPk5uYaR51mzpxJr169aN26Nd999x1Hjx4tlrCVpkOHDoSFhXH+/Hm0Wi2bN2+mUqVKAHz//ff885//ZPjw4ezatYuwsDCGDRtmjOde0wkf1pNoUwghhBDicdOlack4eI3EFWHcnHcMzc+XyYv7XzL0rJCEyAydOHECnU7HwoULadGiBQEBAdy4caPEdT4+PowePZrNmzfz/vvv8+WXXwJgZVU4z7OgoOCe/QQHB9O2bVtOnz5NWFiY8Wvy5MkEBwcbr1Or1XTs2JH58+dz5swZYmNj2bdvX4n2oqKiSEpKYu7cubRp04a6devet6BCUYnvAwcOGI8tXryYHj16MHjwYN5+++37lgEvSi5r1KhRYlTm4MGDtGrVijFjxtCsWTP8/f2LFTdwdHTE19eXvXv33rOPB9G4cWMOHjxoTF6FEEIIIcoLXZqWjAPXSPxPGDfnHUfzc8wzmQTdzvzHuJ5Rubm53Lx5s9gxtVqNh4cHtWrVQqfTsXz5cnr06MHhw4dZtWpVsWvHjx9Pt27dCAgIIDU1lX379lGvXj0AatSogaIobN++ne7du2Nra1ti/U5+fj7r169n5syZNGzYsNi5ESNGMH/+fE6fPs3Vq1e5fPkybdu2xdXVlV9++QW9Xk+dOnVKvKfq1atjZWXF8uXLGT16NOHh4cyaNeuez8HHx4eBAwfy7rvvkpuby4svvsjly5c5c+YM9vb2bNu2jY8++sg44vOg/P39+eqrr9i5cyd+fn6sX7+e48eP4+fnZ7xm+vTpjB49mkqVKtGtWzcyMjI4fPgw77333kP1OXbsWJYvX87AgQOZOnUqzs7OHD16lOeff77U5yaEEEII8STp0rTknEki52xS4XS4CqZCJkQPs1nq07Zjxw6qVKlS7FidOnWIioqiadOmLFq0iHnz5jF16lTatm3LnDlzGDp0qPHagoIC3n33Xa5du4aTkxNdu3Zl8eLFQOGoy4wZM/jggw8YNmwYQ4cOLbG/0LZt20hOTqZPnz4lYqtduzaNGjUiODiY1157jc2bNzN9+nS0Wi21a9fmu+++MxZhuJ2npychISF8+OGHLFu2jObNm7NgwQJ69ux5z2exbt06Pv/8cz777DOuXLlC1apVGTJkCL/++isvvfQSPXv2ZP/+/Q81FW306NGEhYUxYMAAFEVh0KBBjBkzhl9//dV4zZtvvolWq2Xx4sVMnDgRDw+PYqXFH5S7uzv79u1j0qRJtGvXDgsLC5o2bcqLL7740G0KIYQQQjyIwjVBt/6XBD3DI0D3o9y5p4w5URTFCdBoNBqcnJyKndNqtcTExODn54eNjY1pAhRClJn8zgohhBBPlk6T+9dI0K3HlgSp7NR4f1w+qsylp6fj7OwM4GwwGNLLel+FHCESQgghhBCiIijQ5JJ99q/pcHHpFXok6G4kIRJCCCGEEOIZIknQg5GESAghhBBCCDMnSdDDk4RICCGEEEIIMyRJ0OMhCZEQQgghhBBmQpKgx08SIiGEEEIIIcoxSYKeLEmIhBBCCCGEKGckCXp6JCESQgghhBCiHNBpcsmRJOipk4RICCGEEEIIE5EkyPRUpg5AlC+hoaEoikJaWtpT7Xf69Ok0bdr0qfYphBBCCGEKurRcMg5eJ3HlaW7OPYZm+2XyrkgyZCoVc4RouvNT7EvzwLckJiYybdo0fv31VxISEnB1daVJkyZMnz6dli1bPrbQ2rdvT9OmTVmyZMlja3PUqFEEBwfzzTffMHDgwDLfN3HiRN57773HFocQQgghRHmiS9GSE/7XSNC1DLNPfhRXSzQ2ycSkhePN4/v71BQqZkJUzvXr14/8/HzWrVtHzZo1SUhIYO/evaSkpJg6tHvKzs5m48aNTJo0ieDg4AdKiBwcHHBwcHiC0QkhhBBCPF265BxywpPIPptE/rVMU4fz6DzUpKoTiYg7zLU/IwCwcXA0cVCPTqbMlTNpaWkcOnSIefPm0aFDB2rUqMHzzz/P1KlTefnll43XxcXF0atXLxwcHHBycuK1114jISHBeD4oKIjevXsXa3v8+PG0b9/eeP63335j6dKlKIqCoijExsYarz158iSBgYHY2dnRqlUrzp8/f9/YN23aRP369Zk6dSqHDx8u1h4UTsd7/vnnsbe3x8XFhRdffJErV64AJafMHT9+nE6dOuHh4YGzszPt2rXjzz//LOtjFEIIIYQwCV1SDun7r5Kw/BQ3Pz+B5tdY802GFKCSmqTKCYRm/cDG45+x6/cvuXY9wtSRPVaSEJUzRSMlW7duJTc3t9RrDAYDvXv3JiUlhd9++43du3cTHR3NgAEDytzP0qVLadmyJSNHjiQ+Pp74+Hh8fHyM5z/66CMWLlzIiRMnUKvVDB8+/L5tBgcHM2TIEJydnenevTtr1641ntPpdPTu3Zt27dpx5swZfv/9d0aNGoWiKKW2lZGRwZtvvsnBgwc5evQotWvXpnv37mRkZJT5PQohhBBCPA35idmk740jYemf3FxwgvSdseRfN9MkSKWg97Lgpuc1dqeuZ+Mfn7H3aAgJidGmjuyJMemUOUVRYoEapZxaYTAY3n3K4ZQLarWakJAQRo4cyapVq2jevDnt2rVj4MCBNG7cGIA9e/Zw5swZYmJijEnM+vXradCgAcePH+e55567bz/Ozs5YWVlhZ2eHl5dXifOfffYZ7dq1A+CDDz7g5ZdfRqvVYmNjU2p7Fy9e5OjRo2zevBmAIUOGMG7cOD755BNUKhXp6eloNBpeeeUVatWqBUC9evXuGt/f//73Yq+/+OILXF1d+e2333jllVfu+/6EEEIIIZ6k/JtZxn2CdInZpg7n0agVCjwV4nMvc+bCXjKik0wd0VNl6hGi54Aqt311+uv4JpNFVA7069ePGzdusG3bNrp06UJoaCjNmzcnJCQEgMjISHx8fIqN6NSvXx8XFxciIyMfSwxFyRdAlSpVgMJiD3cTHBxMly5d8PDwAKB79+5kZWWxZ88eANzc3AgKCqJLly706NGDpUuXEh8ff9f2EhMTGT16NAEBATg7O+Ps7ExmZiZxcXGP4+0JIYQQQjywvOuZaHbEcnPBCRKW/EnG3jjzTYYsVei84YrLRX66vpIfjszh8MmNZGRUrGQITDxCZDAYbt3+WlGUD4Bo4DfTRFR+2NjY0KlTJzp16sTHH3/MiBEj+OSTTwgKCsJgMJQ61ez24yqVCoOhePmS/Pz8MvdvaWlp/L6oTb1eX+q1BQUFfPXVV9y8eRO1Wl3seHBwMJ07dwZg7dq1jBs3jh07drBx40b+9a9/sXv3blq0aFGizaCgIG7dusWSJUuoUaMG1tbWtGzZkry8vDK/ByGEEEKIR5Ubl15YHS48mYIUranDeSSKtYo8dx1XM6M4c34fuReyTB1SuVBuqswpimIFDAEWGe78S/5/11gD1rcdMv+yFmVUv359tm7davw+Li6Oq1evGkeJIiIi0Gg0xmlonp6ehIeHF2sjLCysWKJjZWVFQUHBI8f2yy+/kJGRwalTp7CwsDAej4qK4vXXXyc5ORl3d3cAmjVrRrNmzZg6dSotW7bk22+/LTUhOnjwICtWrKB79+4AXL16laSkiveJhRBCCCGeLoPeQF6shpxzyeScS6YgrfQ13eZCsbVA65bLFc05wqNCyY8y76TuSSg3CRHQG3ABQu5xzVTgk6cSjYkkJyfz6quvMnz4cBo3boyjoyMnTpxg/vz59OrVC4COHTvSuHFjXn/9dZYsWYJOp2PMmDG0a9eOwMBAoHANzueff85XX31Fy5Yt+frrrwkPD6dZs2bGvnx9ffnjjz+IjY3FwcEBNze3h4o5ODiYl19+mSZNmhQ73qBBA8aPH8/XX39Nz549+e9//0vPnj3x9vbm/PnzXLhwgaFDh5bapr+/P+vXrycwMJD09HQmTZqEra3tQ8UnhBBCCHEvBp0e7aU0csKT0EamoM8q+6ya8kixV5Ptkk1M8mkizh+goEBn6pDKtfKUEL0F/GowGG7c45o5wKLbXjsC1x64p4fYLPVpcXBw4IUXXmDx4sVER0eTn5+Pj48PI0eO5MMPPwQKp7Bt3bqV9957j7Zt26JSqejatSvLly83ttOlSxemTZvG5MmT0Wq1DB8+nKFDh3L27FnjNRMnTuTNN9+kfv365OTkEBMT88DxJiQk8PPPP/Ptt9+WOKcoCn379jXuSRQVFcW6detITk6mSpUqjB07lrfffrvUdtesWcOoUaNo1qwZ1atXZ/bs2UycOPGB4xNCCCGEKI0+V4c2KpWcc0loz6diyH30WTOmpDipyXTM4FLCn5w/dwSDofSlDqIk5S6z055uEIpSA7gM9DUYDP/3APc5ARqNRoOTk1Oxc1qtlpiYGPz8/O5aGU0IUX7I76wQQognrSAzD21kCjnnktFeSgWd6f8OfhSKiyXpdqmcv/EH0TEnTBKDjYMj7wZ/Z5K+75Seno6zszOAs8FgSC/rfeVlhGgYkAj8bOpAhBBCCCHEs0OnyTUWRci7ogEzHzhR3C1JtbpFZNxh4k6F3/8GcV8mT4gURVFRmBCtMxgMMsFRCCGEEEI8El1SDtnhSeSEJxVukGrOA0EK4KEmWXWTc7EHiD9x0dQRPXNMnhABHYHqwBpTByKEEEIIIcxT0Uap2nNJ5N80072BiqjA4GnBLcM1zkaHknRZ9mF8kkyeEBkMhl0U5r5CCCGEEEKUWd7VjMLpcOeS0SXlmDqcR2OhoPdUuKmL5cyFfWiiE0wdUYVh8oRICCGEEEKIsjDuERT+1x5BGvPeIwhLFQWeBq7nXOLshb1kXko1dUQVkiREQgghhBCi3DLo9Gij09CGJ5MTmYw+08z3CLJWkeeu42rmec6e34f2QqapQ6rwJCESQgghhBDlij6vgNwLqWSHJ6GNSsGgNfM9guwsyHHN5UrqWcLPh6KLyjN1SOI2khAJIYQQQgiT02t15ESmkBOeRO6FVAz55l0fW3FUk+WYSXTSKaIiD6PXm3dS9yyThEgIIYQQQphEQWYeORHJ5IQnkxudBgXmXB/7r41SbVO5EH+cS2eOmTocUUYVMiFqtK7RU+vr7Jtnn1pftwsNDaVDhw6kpqbi4uLyVPuOjY3Fz8+PU6dO0bRp06fa95NmMBh4++23+eGHH0hNTb3ne1QUhS1bttC7d++nHKUQQghRfunS/too9VwSeVfSzX6jVDzUpKpvEXX1iGyUaqYqZEJU3iUmJjJt2jR+/fVXEhIScHV1pUmTJkyfPp2WLVs+0b4LCgqYP38+69at48qVK9ja2hIQEMDbb7/NsGHDnmjf5UXnzp3Zu3cvhw8fpkWLFsXO7dixg5CQEEJDQ6lZsyYeHh53bSc+Ph5XV9cnHa4QQghR7uUn5RQmQeFJ5F8z8yICt+0RFB59gFsxsaaOyCQsbWzw8KmHrUtdU4fyyCQhKof69etHfn4+69ato2bNmiQkJLB3715SUlKeeN/Tp0/nv//9L//+978JDAwkPT2dEydOkJpq+jKQeXl5WFlZPdE+4uLi+P333xk7dizBwcElEqLo6GiqVKlCq1at7hunl5fXE41VCCGEKM/ybmT+b4+gBDPfKFWtUOAJ8bkxnLm4j4zoW6aOyCScPL1wrlyPAn11UhNdSE2yIDvH/NMJlakDEMWlpaVx6NAh5s2bR4cOHahRowbPP/88U6dO5eWXXwYKp6QpikJYWFix+xRFITQ0tFh7hw8fpkmTJtjY2PDCCy9w9uy9p/D99NNPjBkzhldffRU/Pz+aNGnCW2+9xYQJE4zX7Nixg9atW+Pi4oK7uzuvvPIK0dHRJdq6fPkyHTp0wM7OjiZNmvD7778bzyUnJzNo0CCqVauGnZ0djRo14rvvvit2f/v27Rk7diwTJkzAw8ODTp06AbBo0SIaNWqEvb09Pj4+jBkzhszM/33aFBISgouLCzt37qRevXo4ODjQtWtX4uPj7/P0Ye3atbzyyiu88847bNy4kaysLOO5oKAg3nvvPeLi4lAUBV9f33vGqSgKW7duNd5/7do1Bg4ciJubG/b29gQGBvLHH38AhYlWr169qFy5Mg4ODjz33HPs2bPnvvEKIYQQ5YVBbyA3VkPaz5eJ//w4ictOkbHvqtkmQ4q1Bfneei47RfB/V//ND0fmcvjkRjLSK04yZKFWU8mvPtUb98Kj5jvk6QZz63ozUuLdMRRYmDq8x0YSonLGwcEBBwcHtm7dSm7uo282NmnSJBYsWMDx48epVKkSPXv2JD//7vX7vby82LdvH7du3f2XPSsriwkTJnD8+HH27t2LSqWiT58+6PXFJwF/9NFHTJw4kbCwMAICAhg0aBA6nQ4ArVbL3/72N7Zv3054eDijRo3ijTfeMCYIRdatW4darebw4cN88cUXAKhUKpYtW0Z4eDjr1q1j3759TJ48udh92dnZLFiwgPXr13PgwAHi4uKYOHHiPZ+VwWBg7dq1DBkyhLp16xIQEMD3339vPL906VJmzpxJtWrViI+P5/jx4/eM83aZmZm0a9eOGzdusG3bNk6fPs3kyZONzywzM5Pu3buzZ88eTp06RZcuXejRowdxcXH3jFkIIYQwJYNOj/Z8CqmbLxI/+w9urTpD5sHrFCRrTR3aQ1Gc1GRXzeWczTE2XVzA5sOfc/z0T2i1Zj7N7wHYObtSrX5rqjUcgq37u6SndSXxai0yU21NHdoTY/5jXM8YtVpNSEgII0eOZNWqVTRv3px27doxcOBAGjdu/MDtffLJJ8YRi3Xr1lGtWjW2bNnCa6+9Vur1ixYton///nh5edGgQQNatWpFr1696Natm/Gafv36FbsnODiYSpUqERERQcOGDY3HJ06caBzVmjFjBg0aNODSpUvUrVuXqlWrFktQ3nvvPXbs2MGmTZt44YUXjMf9/f2ZP39+sf7Gjx9v/N7Pz49Zs2bxzjvvsGLFCuPx/Px8Vq1aRa1atQAYO3YsM2fOvOez2rNnD9nZ2XTp0gWAIUOGEBwcbFw75ezsjKOjIxYWFiWmw5UW5+2+/fZbbt26xfHjx3FzczPeU6RJkyY0adLE+PrTTz9ly5YtbNu2jbFjx94zbiGEEOJp0ucWoD2fQs655MI9gnLNu5y04mFJquUtLlz/g5jTYfe/4VmjKLhXq4m9awC5OT6kJdmTFK+YOqqnSkaIyqF+/foZRxK6dOlCaGgozZs3JyQk5IHbur0Ig5ubG3Xq1CEyMhL432iUg4MDo0ePBqB+/fqEh4dz9OhRhg0bRkJCAj169GDEiBHGdqKjoxk8eDA1a9bEyckJPz8/gBKjGbcncFWqVAEKC0ZAYfGGzz77jMaNG+Pu7o6DgwO7du0q0UZgYGCJ97R//346depE1apVcXR0ZOjQoSQnJxeb3mZnZ2dMhor6L+r7boKDgxkwYABqdeHnBIMGDeKPP/7g/Pnz97zvbnHeLiwsjGbNmhmToTtlZWUxefJk6tevj4uLCw4ODkRFRckIkRBCiHKhIDOPrOM3SQo5x41Zv5PybRQ5p2+ZZzJkoaD3UnHT8zp7M75jw/FP2XnkC2KuVJxkyMrWDu86gVRv9BrO3u+SldmLxKv10CQ5oFCxkiGQEaJyy8bGhk6dOtGpUyc+/vhjRowYwSeffEJQUBAqVWEeazD8r1b/vabB3UlRCv9Dv30NkpOTk/F7lUrFc889x3PPPcc///lPvv76a9544w0++ugj/Pz86NGjBz4+Pnz55Zd4e3uj1+tp2LAheXnFd122tLQs0WfRFLGFCxeyePFilixZYlwPNH78+BJt2NvbF3t95coVunfvzujRo5k1axZubm4cOnSIt956q9gzuL3vov5vf153SklJYevWreTn57Ny5Urj8YKCAtasWcO8efPuem9pcd7J1vbew8yTJk1i586dLFiwAH9/f2xtbenfv3+J5yGEEEI8LboULTnnksiJSDb78tiKjQV5bvlcy7pA+IVQsi9pTB3SU+dcyRunSvUoKPAhNdGFlEQZFykiCZGZqF8KCg5wAAAgAElEQVS/vnGBvqenJ1BY1rlZs2ZA8eTmdkePHqV69eoApKamcuHCBerWLSyPePuUrfv1DYWjGMnJyURGRvLFF1/Qpk0bAA4dOvTA7+fgwYP06tWLIUOGAIWJ0sWLF6lXr9497ztx4gQ6nY6FCxcaE8Pb1/k8rG+++YZq1aoVK4IAsHfvXubMmcNnn31mHDl6GI0bN2b16tWkpKSUOkp08OBBgoKC6NOnD1C4pig2Nvah+xNCCCEeRt6NzMKpcOeSyb+Zdf8byjHFUU2WYxYxKaeJvHCQggKdqUN6qiwsLfGoXgdre38y073J1thw67qpoyqfJCEqZ5KTk3n11VcZPnw4jRs3xtHRkRMnTjB//nx69eoFFI42tGjRgrlz5+Lr60tSUhL/+te/Sm1v5syZuLu7U7lyZT766CM8PDzuuVFo//79efHFF2nVqhVeXl7ExMQwdepUAgICqFu3LiqVCnd3d/773/9SpUoV4uLi+OCDDx74ffr7+/Pjjz9y5MgRXF1dWbRoETdv3rxvQlSrVi10Oh3Lly+nR48eHD58mFWrVj1w/3cKDg6mf//+xdZAAdSoUYMpU6bw888/G5//wxg0aBCzZ8+md+/ezJkzhypVqnDq1Cm8vb1p2bIl/v7+bN68mR49eqAoCtOmTStRpEIIIYR43Ax6A3mxGnLOJZMTkUxB6qMXdDIlxV1NmlUKF24c4/KZk6YO56mzd3HD1bs+qHxJTXRHk2IBT37XFrNXIROis2/eu/S0KTk4OPDCCy+wePFioqOjyc/Px8fHh5EjR/Lhhx8ar1uzZg3Dhw8nMDCQOnXqMH/+fDp37lyivblz5/KPf/yDixcv0qRJE7Zt23bPvXy6dOnCd999x5w5c9BoNHh5efH3v/+d6dOnG0dINmzYwLhx42jYsCF16tRh2bJltG/f/oHe57Rp04iJiaFLly7Y2dkxatQoevfujUZz7yHspk2bsmjRIubNm8fUqVNp27Ytc+bMYejQoQ/U/+1OnjzJ6dOn+fLLL0ucc3R0pHPnzgQHBz9SQmRlZcWuXbt4//336d69Ozqdjvr16/Of//wHgMWLFzN8+HBatWqFh4cHU6ZMIT09/aH7E0IIIe7GkK9HezH1r6IIyeizzHjk5K9NUpMM1zkXc4iEmJLbgDzLFJUKDx9/bJ1ro82uSnqyA0n332VE3EG517qK8k5RFCdAo9Foiq2BgcKyzjExMfj5+WFjY2OaAIUQZSa/s0II8eQUZOWjjSqsDJd7MRVDvvnOQlAsVeg89dzQXubsxdAKtS8QgI2DI27V6mNh6Udasif5OZb3v+kJsrZXM2JhW5PGUCQ9PR1nZ2cAZ4PBUOZPlivkCJEQQgghxLOusChC8l9FETTmXRTBXk2OSw5xmgjORf1G3oUcU4f0VLl618DRvQ55eT6k3XIiJaHiVYJ7kiQhEkIIIYR4RuRdyyAnIhltRDL5N7NNHc4jUVwtSbdN41LCSS6e+wODwYwzugdkaWODh099LG1rkpFSmZwsa3KumTqqZ5ckREIIIYQQZspQoCf3suavJCiFAo0ZF0VQAE81yUo8kXFHuP5nlKkjeqqcK1X5qyx2dVJvuZCaJGWxnxZJiIQQQgghzIheq0N7PrUwCTqfgkFrhpujFrFUUeBh4GZeLOGXQkm7fNPUET01t5fFzkqvQpbGVspim4gkREIIIYQQ5ZxOk4s2onA9UO5lDRSYcVEsWwu0bnlcTY8k/EIouRfMe7+jB+Hg5olrlXroqU7aLSmLXV5IQiSEEEIIUQ7l38wyFkXIv55p6nAeieJiSaadhuhbYZyPOoJeb8ajWg9AZaHGo3ptbBxrk51ZhcxUe27dMHVU4k6SEAkhhBBClAOGAgO5sZrCkaDIFApStKYO6eEpgIeaFItEzl/9nbhT4aaO6Km5fXPUtFvupKdZkJ5m6qjEvUhCJIQQQghhIvrcwvVA2ohktBdS0Web8Sapf60HSsi/wrnoA6RcrhgLYlQWFrj7+GPrVBtttrdsjmqGJCESQgghhHiKCjS55EQmkxORQm50mnmvB7JXo3XR/rUe6LcKsx7of6NANdDccidDoyZDY+qoxMOqkAlRZN16T62velGRT60vUf6EhobSoUMHUlNTcXFxeSJ9hISEMH78eNLSZDxeCCHKq7wbmcapcGa/HshNTbpNGpdunuTCuT/AYL4JXVmpLNR4+NTGxskfbXYVGQV6xkiB83IoKCgIRVFKfHXt2tXUoT0SvV7PlClT8Pb2xtbWlsaNG/N///d/Zb5///79dO/eHXd3d+zs7Khfvz7vv/8+168/viH52NhYFEUhLCzssbVZVrNnz8bCwoK5c+c+0H0DBgzgwoULTygqIYQQD8NQoEd7MZW0bdHEzz1G4rJTpO+JM89kSKVgqGxBYqWb/Jb9AxtOfsYvh//Dheijz3QyZO/qQbUGbajWYAh2Hu+SrulG4tXapCc7mDo08ZhVyBEic9C1a1fWrl1b7Ji1tfVDt2cwGCgoKECtNt2P/Ouvv2bx4sV89dVXtGjRgkuXLpX53i+++IIxY8bw5ptv8uOPP+Lr60tcXBxfffUVCxcuZNGiRU8w8pLy8vKwsrJ6rG2uXbuWyZMns2bNGj744IMy32dra4utre1jjUUIIcSD02t1aKNSyIlMMfv9gRQbC/Lc8rmedZHwi7+RFZ1q6pCeOLWVNR7V62BlV5OcTC8yUu1IkopwFYKMEJVT1tbWeHl5FftydXUFSh/FSEtLQ1EUQkNDgcKpWoqisHPnTgIDA7G2tubgwYMArFy5klq1amFlZUWdOnVYv359sb4VRWHlypV069YNW1tb/Pz82LRpU7Frrl+/zoABA3B1dcXd3Z1evXoRGxt7z/ekUqnw9PRk4MCB+Pr60rFjRzp27HjfZ3Ht2jXGjRvHuHHjWLNmDe3bt8fX15e2bduyevVqPv74Y+O1R44coW3bttja2uLj48O4cePIyvrffGZfX19mz57N8OHDcXR0pHr16vz3v/81nvfz8wOgWbNmKIpC+/btgcJRu969ezNnzhy8vb0JCAgACpO8wMBAHB0d8fLyYvDgwSQmJt73Pd3pt99+Iycnh5kzZ5KVlcWBAweKnT99+jQdOnTA0dERJycn/va3v3HixAmgcMrc7dPxoqOj6dWrF5UrV8bBwYHnnnuOPXv2PHBMQggh7k+XqiXj8HVurT7LjVlHSdlwnpzTt8wyGVJcLMnyzuas1e9sujCfzYc/54+wrWRlPaPJkKLg6l2D6o06UaXeMKyc3iEtuSOJV2uSkWpn6ujEUyQJ0TNu8uTJzJkzh8jISBo3bsyWLVv4xz/+wfvvv094eDhvv/02w4YNY//+/cXumzZtGv369eP06dMMGTKEQYMGERlZuB4qOzubDh064ODgwIEDBzh06BAODg507dqVvLy8u8by0ksvodFomDZt2gO9h02bNpGXl8fkyZNLPV+UDJw9e5YuXbrQt29fzpw5w8aNGzl06BBjx44tdv3ChQsJDAzk1KlTjBkzhnfeeYeoqCgAjh07BsCePXuIj49n8+bNxvv27t1LZGQku3fvZvv27UDhSNGsWbM4ffo0W7duJSYmhqCgoAd6fwDBwcEMGjQIS0tLBg0aRHBwcLHzr7/+OtWqVeP48eOcPHmSDz74AEtLy1LbyszMpHv37uzZs4dTp07RpUsXevToQVxc3APHJYQQojiDwUDetQw0u2JJWPInN+cdR/PTZXIvmWFxBBVQWU2S1y0O5W1jw6lP2X54ORHnD1BQYMbV7u7B1smFqnVb4NN4AM5Vx5KT04/Ea41IvemKvkD+LK6oZMpcObV9+3YcHIrPUZ0yZcoDJxMzZ86kU6dOxtcLFiwgKCiIMWPGADBhwgSOHj3KggUL6NChg/G6V199lREjRgAwa9Ysdu/ezfLly1mxYgUbNmxApVKxevVqFEUBCqd7ubi4EBoaSufOnUvEkZ2dTadOnRg8eDC7d+8mOzubBQsWGO93cnJi7dq19OvXr8S9Fy9exMnJiSpVqtzzvX7++ecMHjyY8ePHA1C7dm2WLVtGu3btWLlyJTY2NgB0797d+P6nTJnC4sWLCQ0NpW7dunh6egLg7u6Ol5dXsfbt7e1ZvXp1salyw4cPN35fs2ZNli1bxvPPP09mZmaJn9/dpKen8+OPP3LkyBEAhgwZwosvvsjy5ctxcnICIC4ujkmTJlG3bl3je7ubJk2a0KRJE+PrTz/9lC1btrBt27YSyaEQQoj7M+j0aKPTCktjR6ZQkH73D//KO8Xagnz3Am7kRBN+MZSM6CRTh/REGYshONdCm+2NJsme5ATF1GGJckYSonKqQ4cOrFy5stgxNze3B24nMDCw2OvIyEhGjRpV7NiLL77I0qVLix1r2bJliddFU/ROnjzJpUuXcHR0LHaNVqslOjq61DhCQkJIS0vj3//+N1lZWbRv356goCCCg4O5du0amZmZtGrVqtR7DQaDMXG6l6K4vvnmm2L36vV6YmJiqFevsLpg48aNjecVRcHLy6tM09waNWpUYt3QqVOnmD59OmFhYaSkpKDX64HCBKZ+/fr3bRPg22+/pWbNmsYkpmnTptSsWZMNGzYYf1YTJkxgxIgRrF+/no4dO/Lqq69Sq1atUtvLyspixowZbN++nRs3bqDT6cjJyZERIiGEeAD67HxyolLQRqagvZCKIdf8psAVUVwsybRPJybpDFEXj1AQZb4JXVk4eVTGuXJd9FRHc8uNdI0F6X+VxJZUSJRGEqJyyt7eHn9//1LPqVSFQ7qG2yq75Ofn37WdO92ZXJQ14Si6Rq/X87e//a1Y4lGkaITlTmfOnKFBgwZYWVlhZWXF7t27adOmDX369KF27dp07dr1riNAAQEBaDQa4uPj7zlKpNfrefvttxk3blyJc9WrVzd+f+dUM0VRjInMvdz5LLOysujcuTOdO3fm66+/xtPTk7i4OLp06XLPqYN3WrNmDefOnStW8EKv1xMcHGxMiKZPn87gwYP5+eef+fXXX/nkk0/YsGEDffr0KdHepEmT2LlzJwsWLMDf3x9bW1v69+//QDEJIURFpEvOIScihZyIZPKupIPezKbAFVEpGDxVJHOTqLjfuX7q2d4CxNLaBnefwmIImeleZGtsuSXFEMQDkITIDBUlHfHx8TRr1gygzGWi69Wrx6FDhxg6dKjx2JEjR4yjJ0WOHj1a7JqjR48a+2revDkbN26kUqVKxild91O1alW2bNlCRkYGjo6OVKpUiT179tCmTRu2b9/OyZMn73pv//79+eCDD5g/fz6LFy8ucT4tLQ0XFxeaN2/OuXPn7ppIlkXRCFBBwf0/CYyKiiIpKYm5c+fi4+MDYCx0UFZnz57lxIkThIaGFhsBTEtLo23btoSHh9OwYUOgMDEMCAjgn//8J4MGDWLt2rWlJkQHDx4kKCjIeC4zM/O+BS+EEKIiMhgM5F3NQBtZmATpErJNHdJDU2wtyHPN53r2JSIuHiAjOtnUIT1Rrt41cHQPQKerSuotF9KSVfBsv2XxBElCVE7l5uZy8+bNYsfUajUeHh7Y2trSokUL5s6di6+vL0lJSfzrX/8qU7uTJk3itddeo3nz5rz00kv89NNPbN68uUQVsk2bNhEYGEjr1q355ptvOHbsmHGh/+uvv87nn39Or169mDlzJtWqVSMuLo7NmzczadIkqlWrVqLft956i6VLl9KzZ08+++wz3N3d2bNnD2lpadjZ2bF69WpWrFhRasw+Pj4sXryYsWPHkp6eztChQ/H19eXatWt89dVXODg4sHDhQqZMmUKLFi149913GTlyJPb29sYiCMuXLy/T86lUqRK2trbs2LGDatWqYWNjg7Ozc6nXVq9eHSsrK5YvX87o0aMJDw9n1qxZZeqnSHBwMM8//zxt27Ytca5ly5YEBwcze/ZsJk2aRP/+/fHz8+PatWscP3681PVWAP7+/mzevJkePXqgKArTpk0r0wiYEEJUBAadHu2lNOMmqfoM8x09V1wtybBNK5wKF3UYvd58p/Xdj62jE25V66Gy8iUjxZOcLCtyrpk6KvGsqJAJUb2o8j90vGPHjhLTw+rUqWOshrZmzRqGDx9OYGAgderUYf78+aUWM7hT7969Wbp0KZ9//jnjxo3Dz8+PtWvXGstLF5kxYwYbNmxgzJgxeHl58c033xjXxNjZ2XHgwAGmTJlC3759ycjIoGrVqrz00kt3HTHy9vbm2LFjxnvS09P529/+xrfffoudnR2dOnXC39+fCRMmlHr/mDFjCAgIYMGCBfTp04ecnBx8fX155ZVXjPc0btyY3377jY8++og2bdpgMBioVasWAwYMuO9zKaJWq1m2bBkzZ87k448/pk2bNsZS5nfy9PQkJCSEDz/8kGXLltG8eXMWLFhAz549y9RXXl4eX3/9NVOmTCn1fL9+/ZgzZw7z5s0jOTmZoUOHkpCQgIeHB3379mXGjBml3rd48WKGDx9Oq1at8PDwYMqUKaSnp5cpJiGEeBYZ1wNFJKO9kIYhz0wTBwsFvaeKJP11Iq8c5mZM2ffzMzcqCzXuPrWwdfInN8ebtCQHKYYgnhjFYOIdhhVFqQrMA7oBtsAF4C2DwXD3OVT/u9cJ0Gg0mhJ/iGu1WmJiYvDz8zNWFxNloygKW7ZsoXfv3qYORVQg8jsrhHicdClaciKS0UYkkxtrvuuBFDs1Whct1zMvcO7ib2RnP7sfcDl6VMalch0MSnXSbrmjy7MwdUjiLqxtLajsmo9bRjTOV0/QcMOXpg4JKKzc+9fMHmeDwVDmXxaTjhApiuIKHAb2U5gQJQK1gDRTxiWEEEII85N3LcOYBOXfNN/1QLir0VilEJ3wJxcjjoGJP7x+UixtbHD3qYuVrR9Z6V5kSTGEcstCreDpoeCRfx2n6CNYH/gN5a8pmhZ3WVpgTkw9ZW4KcNVgMAy77VisiWIRQgghhBkxFOjJvawh51wy2shkCjRmuh7IUkWBh4HE/DgiYg6RFPOMbpOgKLhWqV5YDCG/KqlJLqQlyWao5ZICbu5qKqmTcb72J7bHd6HKenZHJ02dEPUEdiqKsgloB1wHVhgMhlLH3RRFsQasbzvkWNp14tGYehqlEEIIcTf63AK05wurwmmjUjFodaYO6aEojmqyHbOJSztHxIWD5F3IMXVIT4SxGIKlL+mplcjJspRiCOWUvZOayg5ZuCVHYH9qFxaJz2hiXgpTJ0Q1gXeARcBs4HlgmaIouQaD4atSrp8KfPIU4xNCCCGEiRVk5Bmnwmmj00Bnhh/cKYCnmhRVIhevHyP2zGlTR/REFBZD8L+tGIK9FEMop6xsLKjspsMt6zKOEaFYhf5p6pBMxtQJkQo4YTAYPvzr9SlFURpQmCSVlhDNoTB5KuIIyOcMQgghxDMmPykH7blkcs4lkXc1A8wxB7KxIM9NR3zOZSIuHUBzOdHUIT0RzpW8caoUgN7gg+aWGxkaCzI0heckFSo/VCoFT08VHvp4nGKOYn1oPyqdmU4zfcxMnRDFAxF3HIsESt1gxWAw5AK5Ra8VRX7NhBBCiGdF3rUMcs4lk3MuGV2ieRZFuH1voPMXjlBQYJ5T+u7F2t4B92p1UVv5kqmpTHaGNbeumzoqURoXNzWVrNNwiT+N3fEdqDJSTB1SuWTqhOgwUOeOYwHAFRPEIoQQQoinyKA3kBujKRwJikimIC33/jeVN2oFvYfCrYLrRF05zM2YaFNH9NipLCxwr1YLW2d/crXeaG45kpIoH0qXR3aOaio7ZuOWeh7707tQ37hs6pDMgqkTosXAEUVRPgS+p3AN0ai/voQQQgjxjDHk69FeTC2sDBeVjD7L/EZQFAc1Oc45XEs/z7kLv6G9mGnqkB47J08vnCvVQY8P6UluZKSryXh2i4yZLUtrFZXd9LjlxOIY9RvWocdMHZJZMmlCZDAYjiuK0ofCtUEfAzHAeIPB8I0p4xJCCCHE46PX6tBGpZATnoT2QiqGPL2pQ3owCuChJk2dxMX4E1wO//OZ2xvI2s4et2p1Udv4kp1emSyNjewJVA6pLBQ8PYrWAf2B9aF9sg7oMTD1CBEGg2E7sP1p9vmf0fueWl/vrvr7U+vrfnx9fRk/fjzjx483dSiPVVBQEGlpaWzdutXUoZjEnT9XRVHYsmULvXv3LvX62NhY/Pz8OHXqFE2bNn2aoQohKpCCzDzjeqDc6DQoMK8EQrFSke+h56Y2lnPRB0i7HG/qkB4rRaXCvVot7JxrkZdXlbRbTqTekmlw5ZGrhyWe6mRc4sOw+2Mnqsw0U4f0zDF5QiRKetQ/8ENCQhg/fjxpacV/YY4fP469vf3jCJFvv/2WN954g5EjR7Jq1arH0ubDWrp06VPZO2nhwoUsX76chIQEqlevzvvvv8+oUWWb3Xnq1Clmz57NgQMH0Gg0VK9enXbt2jFp0iQCAgIeKa7H+XMVQohHoUvVkhP+V2W4K+lmVxlOcbEk0y6d2JSzRF44TMH5Z+uTd0ePyrhUroNB8UGT5EFmhgWZGaaOStzJwVlNJfssXJMjsQ/bhTpBltY/aZIQVSCenp6Pra01a9YwefJkVq5cyaJFi7Czs3tsbZdVQUEBiqLg7Oz8xPs6cOAAEydOZNmyZfTo0YOrV6+SlJRUpnu3b99Ov3796NKlC9988w21atUiMTGRTZs2MW3aNDZu3PhQMeXl5WFlZfVYf65CCPGg8hOyCpOgiGTyr5vZWhoLBYOHiiRucD7ud66fOm/qiB6romlwljY1yEqvTJbGVqbBlUPWthZUds3HLTMah3P7sQp9NveoKs9Upg5APLhFixbRqFEj7O3t8fHxYcyYMWRmFv5PKDQ0lGHDhqHRaFAUBUVRmD59OlA4tWrJkiXGdhRFYfXq1fTp0wc7Oztq167Ntm3b7tt/bGwsR44c4YMPPqBu3br88MMPxc6HhITg4uLC9u3bqVOnDnZ2dvTv35+srCzWrVuHr68vrq6uvPfeexQUFBjvy8vLY/LkyVStWhV7e3teeOEFQkNDS223fv36WFtbc+XKFYKCgopND9Pr9cybNw9/f3+sra2pXr06n332mfH8lClTCAgIwM7Ojpo1azJt2jTy8/Pv+Z5VKhUWFha89dZb+Pr60qZNG/r06XPfZ5Wdnc2wYcPo3r0727Zto2PHjvj5+fHCCy+wYMECvvjiC6AwuXvrrbfw8/PD1taWOnXqsHTp0mJtFb3POXPm4O3tbRxZuvPnChAfH0+3bt2wtbXFz8+PTZs2lYgtKiqKVq1aYWNjQ4MGDYo9a4CIiAi6d++Og4MDlStX5o033iiWBO7YsYPWrVvj4uKCu7s7r7zyCtHR/6uuFBsbi6IobN68mQ4dOmBnZ0eTJk34/fff7/vchBDlW97VDDQ7Yrm58AQJi/8kffcVs0mGFDs1ed4FXHaK5KcbK/n+6Gz2HQ3h+g3zT4ZUFhZ41AigeuNueAW8hWIzitRb7Ui86kuWxtbU4Ym/qC1VVKmi0Mj9Oq3SfqDVznfx//Y93LYtwSpakiFTkBEiM6RSqVi2bBm+vr7ExMQwZswYJk+ezIoVK2jVqhVLlizh448/5vz5wn/cHRwc7trWjBkzmD9/Pp9//jnLly/n9ddf58qVK7i5ud31njVr1vDyyy/j7OzMkCFDCA4OZujQocWuyc7OZtmyZWzYsIGMjAz69u1L3759cXFx4ZdffuHy5cv069eP1q1bM2DAAACGDRtGbGwsGzZswNvbmy1bttC1a1fOnj1L7dq1je3OmTOH1atX4+7uTqVKlUrEN3XqVL788ksWL15M69atiY+PJyoqynje0dGRkJAQvL29OXv2LCNHjsTR0ZHJkyff9T03a9aMqlWrMmbMGNasWYNKVbbPEnbu3ElSUtJd23ZxcQEKk7hq1arx/fff4+HhwZEjRxg1ahRVqlThtddeM16/d+9enJyc2L179z2nCU6bNo25c+eydOlS1q9fz6BBg2jYsCH16tUzXjNp0iSWLFlC/fr1WbRoET179iQmJgZ3d3fi4+Np164dI0eOZNGiReTk5DBlyhRee+019u0rXIOXlZXFhAkTaNSoEVlZWXz88cf06dOHsLCwYs/no48+YsGCBdSuXZuPPvqIQYMGcenSJdRq+edHCHNh0BvIi9UYR4LMrjy2hyUay2SiE/7kYsSxZ6oggpNnFZwrBRirwWWmq8mUanDlikql4O6pwtOQgFPcCWx/34OSm2PqsMRt5C8SM3R7UQQ/Pz9mzZrFO++8w4oVK7CyssLZ2RlFUfDy8rpvW0FBQQwaNAiA2bNns3z5co4dO0bXrl1LvV6v1xMSEsLy5csBGDhwIBMmTODSpUv4+/sbr8vPz2flypXUqlULgP79+7N+/XoSEhJwcHCgfv36dOjQgf379zNgwACio6P57rvvuHbtGt7e3gBMnDiRHTt2sHbtWmbPnm1sd8WKFTRp0qTU+DIyMli6dCn//ve/efPNNwGoVasWrVu3Nl7zr3/9y/i9r68v77//Phs3brxr0qLX6+nVqxdNmjQhLS2NwYMH89VXX2FlZQVAw4YNGTZsGO+//36Jey9evAhA3bp1S227iKWlJTNmzDC+9vPz48iRI3z//ffFEiJ7e3tWr15t7PtuXn31VUaMGAHArFmz2L17N8uXL2fFihXGa8aOHUu/foV7IK9cuZIdO3YQHBxsnArZvHlz43OHwkTYx8eHCxcuEBAQYLy3SHBwMJUqVSIiIoKGDRsaj0+cOJGXX34ZKEzAGzRowKVLl+77TIQQpmXQ6dFGp6ENTyYnMhl95r1H0ssVSxUFHgYS8q8QcfkQyTFXTR3RY2PcFNXal0xNJbLTpRpcuaOAm7saT3UKLvGnsT2+SzZELeckITJD+/fvZ/bs2URERJCeno5Op0Or1ZKVlfXAi+sbN25s/N7e3h5HR0cSE2uif0oAACAASURBVBPvev2uXbvIysqiW7duAHh4eNC5c2fWrFlT7I9nOzs7YzIEULlyZXx9fYuNVlWuXNnY159//onBYChRYCA3Nxd3d3fjaysrq2Ix3ykyMpLc3Fxeeumlu17zww8/sGTJEi5dukRmZiY6nQ4nJ6e7Xr9jxw4OHz7M9evXsbe355VXXqFHjx5s3rwZCwsLoqOjiyVct3uQYg+rVq1i9erVXLlyhZycHPLy8kpUgWvUqNH/s3ff4VFW+f//n2daZtIzMwlJSKUXdZVlZdFVsaywimL5KXaBtbDIj7WsYllExBVRQUW3uH5AXNQP635E17IWqtKigIT0QkihZ5JMSZmSzNzfP4ZkCQlJCCEzIedxXVwXc8993/NKQpn3nHPep9NiCGD8+PFtHmdmZp70HI1Gw9ixY8nPzwdg165dbNy4sd3RxZKSEoYNG0ZJSQnz5s0jIyODqqoqfD5/G92KiopWBdHxP6+EhAQAKisrZUEkSUHI5/HiKrTizK3CVVCD4vJ2flGQEJEaGiLqKbfmkV+0GU/R2fEJvEqtObYp6mC5KWoQi4zWEGuoI6Y6l7DMdagrKwIdSToFsiDqY8rLy7nmmmuYOXMmCxcuxGg0smXLFn772992ug6mPVqtttVjIUTLG9v2rFixgpqamlZNFHw+H7t372bhwoWo1eqT3rej1/L5fKjVanbt2tVyj2bHvyk3GAwIcfL/CAyGjudIZ2RkcNttt7FgwQImTpxIVFQUq1evZsmSJSe9Jisri5SUlJZphJ9++ilXX301V155JTfccAODBg3iwgsvbPfa5gKvoKCgTZFyvI8++ohHHnmEJUuWMH78eCIiInjllVf44YcfWp13Ot3kOvq+nXiOz+fjuuuuY/HixW3OaS5qrrvuOpKTk3nnnXdITEzE5/Nxzjnn4PG07sp0/M/9+PtLkhQcmvcIasiuwl1kRWnsI38/BRCroUZ1lKIDP1K+JyvQiXpMVFwikXHD8ClJ2C0mah1quSlqkAmL1BAX3kCMtYiw3A1oK/r+GrT+TBZEfczOnTtpampiyZIlLes0Pvroo1bn6HS6Vs0Kekp1dTX//ve/Wb16NaNHj2457vP5uOSSS/jqq6+YPHlyt+59wQUX4PV6qays5JJLLul2xqFDh2IwGFi/fn3LlLHjbd26ldTUVJ555pmWY+XlHbezHDhwIKWlpRw4cICkpCTCwsL4z3/+w+WXX85TTz3FmjVrTlpsXH311ZjNZl5++WU++eSTNs/bbDaio6PZvHkzF110EbNmzWp57vgGBacqIyOj1bqujIwMLrjggjbnXHrppQA0NTWxa9cuZs+eDcCYMWP4+OOPSUtLa3etT3V1Nfn5+bz99tstP68tW7Z0O68kSb3L52zCmVeNM7sK114rNPWNNTUiREWjycdh1z5yi7/Dvu/kMxr6En14BMaB/mlwtbZYnLV6LAcDnUo6nj5Mw4AoNzG1JYTnbZLND84ysiAKUna7vc0UJ6PRyODBg2lqauLNN9/kuuuuY+vWrW32AUpLS6Ouro7169fzs5/9jNDQ0B5pi71q1SpMJhO33HJLm6YCkydPZvny5d0uiIYNG8add97JPffcw5IlS7jggguoqqpiw4YNnHvuuVxzzTVduo9er2fu3Lk88cQT6HQ6Lr74YiwWC7m5ufz2t79lyJAhVFRUsHr1an7xi1/w5ZdftluoHO/mm29mwYIFXHvttSxZsoS0tDQyMjI4fPgwYWFhrFixgilTprTbaKF5zc8tt9zC9ddfz5w5cxgyZAhVVVV89NFHLVmGDBnCP/7xD7755hvS09NZtWoVO3bsID09vVvfz3/961+MHTuWX/3qV3zwwQf8+OOPLF++vNU5f/7znxk6dCgjR47ktddew2q1MmPGDAAeeugh3nnnHW6//XYef/xxzGYze/fuZfXq1bzzzjvExMRgMpn4+9//TkJCAhUVFTz55JPdyipJUu/w1jfiyqv2jwT1oY1SRZSWurBaymuyySvagreg7+8NpNZoMCUNRR856Ng0uHA5DS7IhBjUxMU0EdNQTmThZrQFPyDOomYcUmv9siB66G9XBDpCpzZt2tTmE/17772XlStXsnTpUhYvXsxTTz3FpZdeyqJFi1qNBlx00UXMnDmTqVOnUl1dzfz581tab5+OFStWcOONN7b7xv/mm29m6tSpHD16tNv3f/fdd3nhhRd47LHHOHjwICaTifHjx3e5GGo2b948NBoNzz77LIcOHSIhIYGZM2cCMGXKFB555BFmz56N2+3m2muvZd68eR1+f0JDQ9m2bRtPPfUU06dPx2KxMHr0aF5++WXGjh3LuHHjePjhh1m2bFm710+ZMoVt27axaNEi7rjjDhwOB8nJyVxxxRW88MILAMycOZPMzEymTp2KEILbb7+dWbNm8dVXX53S195swYIFrF69mlmzZhEfH88HH3zAqFGjWp3z0ksvsXjxYnbv3s3gwYP597//jdlsBiAxMZGtW7cyd+5cJk6ciNvtJjU1lUmTJqFSqRBCsHr1aubMmcM555zD8OHDWbZsGRMmTOhWXkmSzgxvnQdnbjXOnCrcJXbw9YE3dCrArKFadYTCigz2Z+YGOlGPiBowkMhY/zQ4m8WIw67GYQ90KqmZPlRNbLS/AIrYux1d3naEr++soZNOjziVRd/BRggRCdjtdnubRfEul4vS0lLS09PR6/WBCShJUpfJv7OS1DO8Dg/O3Cqc2VW4y+zQB5YECZ2KRvNxU+EcfX8qnD48EmPSCNS6NOpssThrQwIdSTqOPkxDXJSHmPoyIoq3oc3PkCNA3aSOimLYDxmBjgGAw+EgKioKIEpRlC6vvOuXI0SSJEmSdDZpsrlwZvtHgjwVDugD7+tEhIaGyHrKanLIK/qepsK+PRVOrdViSh6KPnwQLmcC9qpwao7KaXDBorkAMtaXEl60FW3Bj7IAklrIgkiSJEmS+qDGKifOnCqcOVU0HqgLdJzOCcCswaaxUHTwR0qzMju9JNjFJKQQbh6K15uE3RKNw6rGYfU/J0uhwPrvCFApEbIAkjohCyJJkiRJ6iMaj9T/twg60hDoOJ3TCLyxgqON5eSWfEfNvr7dOi00MpqYgSNQaVOprYnFWa/DeSDQqSRoXgPUiLGhnIjCLbIJgnRKZEEkSZIkSUHMc6AWZ45/OlxTVfBvNipC1bii3RyoLSCn6DtcxX1g9OokNDodpuThhISl46yPp7YmnOojgU4lQesucBHFW/1NEGQBJHWTLIgkSZIkKci4KxzHRoKq8da4Ah2nUyJGi8NgY9/R3RTmbUdR+kAnh/YIQUxCChGmYTR5B2KrjMZeo4KaQAeTWhVAe7ejy92G6Kt/zqSgIwsiSZIkSQowRVHwVNTizPZPh/Pa3IGO1LFjrbGrxGEKKrZx8KeCQCfqttBoIzEJw1FpUnHUmHE2yGlwwUAWQFJvkgWRJEmSJAWA4lPwlDla1gR5HcHdZU1oVTTF+jjU3Bq7pG+2xtboQo5NgxuEs34AtTVhchpcEJAFkBRIsiCSJEmSpF6i+BTc++z+Iii3Cl9tY6AjdUiEa3BGOSm35ZJb+B2NRcE/fa8NITAmphFuHEJT00CsFjkNLhjIAkgKJrIgkiRJkqQzSPH6cO+10ZBdhSu/Gl99U6AjdUgYNTj0NoqP7KQ450fogwvVw2JMxCSMAHUKjmozDQ1aGvpAU76zWUiomrjo5iYI29DlbZNNEKSg0S8LoiVTJ/faaz32zy/O+GtMmDCB888/n9dff/2k56SlpfHwww/z8MMPn/QcIQSffPIJN9xwA2VlZaSnp7N7927OP//8MxFb6kRXfq7dVVBQwLRp08jMzGTEiBFkZra/H8jKlSt5+OGHsdlsPZ5Bks5mSqMPV7HVPxKUV4PiCuIiSAXEarBwkLyyLRzZtTfQiU6ZNkSPKXkYutBBNNTFU2cNpepwoFP1b7IAkvoSVaADSG1NmzYNIQQzZ85s89ysWbMQQjBt2rSWY2vWrGHhwoW9mLBrNm3ahBCi3V9HjvTMhO20tLQuFwzvv/8+I0aMQK/Xk5aW1uXv2YQJExBCsHr16lbHX3/9ddLS0k41chvN36eeLDoOHDiATqdjxIgR7T4/f/58wsLCKCwsZP369Se9z9SpUykqKuqxXJJ0NvN5vDRkW6j+MJ9DCzOo/kceDT9VBmcxpBF4EwQHTeV8bXmXf2b8iQ0ZKzlypI8UQ0JgHJhG8rm/JmHkNDQRM7FVX0Xl/kHUWUMDna5f0odpSEn08bPoUi62fMBFX/2OoR/OxvzpK4TkbpXFkBTUTmmESAgxHLgduARIA0IBC7Ab+Ab4WFGUIG+N0zckJyezevVqXnvtNQwGAwAul4v//d//JSUlpdW5RqMxEBG7rLCwkMjIyFbH4uLiejVDWVkZ99xzD0888QQPPvggFovllN7o6/V6/vjHP3LzzTej1Wp7LFdj45lZP7By5UpuvfVWvv/+e7Zu3crFF1/c6vmSkhKuvfZaUlNTO8xmMBha/vxJktSWz+3FlV9NQ3YV7iIrSmPwroEQIWo8pkYO1BWSVbQJV7Ej0JFOScumqJo0HDVmGhp0chpcAIWGa4iNdBNTV0p40Ra0hTtl0SP1WV0aIRJCXCCEWAvsAS4FdgCvA/OA9wEB/Ak4JISYK4QIOUN5+40xY8aQkpLCmjVrWo6tWbOG5ORkLrjgglbnTpgwodVUuMrKSq677joMBgPp6el88MEHbe5fXFzMpZdeil6vZ9SoUaxdu7bTTHl5eVxzzTWEh4czYMAA7r77bqqqqjq9Li4ujvj4+Fa/VCr/H70dO3bw61//GrPZTFRUFJdddhk//fRTq+ufe+45UlJSCAkJITExkTlz5rR83eXl5TzyyCMtI08n0/z8jBkzSE9P58ILL+Suu+7qNHuz22+/HbvdzjvvvNPheX/9618ZPHgwOp2O4cOHs2rVqjY5/va3vzFlyhTCwsK47777uPzyywGIiYlpM/rn8/l44oknMBqNxMfH89xzz3WaVVEU3n33Xe6++27uuOMOli9f3ibDrl27eP755xFC8Nxzz1FWVoYQgo8++ogJEyag1+t5//33WblyJdHR0a2u/+yzzxg7dix6vR6z2cxNN93U8tz777/P2LFjiYiIID4+njvuuIPKyr7ZiUqSTsbn8dKwx0LVqjwOLcygZnUhrtzqoCyGRLgG10AP+YZd/Kv4VdZsfYUf93yGyxn8xZBaqyVu0ChSzrueuMEP4FVPp/rIRVgOJOJu0AU6Xr8TFqkhLbGJC8ILueTA//DLLx5k8IdzMH72GrqCHbIYkvq0ro4QfQq8AkxVFOWkfVmEEOOBR4DHgBdPP17/Nn36dN59913uvPNOAFasWMGMGTPYtGlTh9dNmzaN/fv3s2HDBnQ6HXPmzGn1ptTn83HTTTdhNpvJyMjA4XB0uLYI4PDhw1x22WXcf//9LF26FKfTydy5c7n11lvZsGFDt7/G2tpa7r33XpYtWwbAkiVLuOaaayguLiYiIoL/+7//47XXXmP16tWMHj2aI0eOsGfPHsBfIP7sZz/jgQce4P777+/wdQYOHMjYsWOZPXs2n332GXq9/pRyRkZG8vTTT/P8889z7733EhYW1uacTz75hN///ve8/vrrXHXVVXzxxRdMnz6dpKSklqIH/NPVFi1axGuvvYZarWbKlCncfPPNLSNpx4/IvPfeezz66KP88MMPbN++nWnTpnHxxRfz61//+qRZN27cSENDA1dddRVJSUmMGzeON954g4iICMD/s7zqqquYNGkSf/jDHwgPD28pbOfOncuSJUt49913CQkJ4dtvv2117y+//JKbbrqJZ555hlWrVuHxePjyyy9bnvd4PCxcuJDhw4dTWVnJI488wrRp0/jPf/5zSt9vSQo2SqMXZ0ENzqwqXAU1QVn8NBPRWhyhNvYe3UlRzg99qilCZFwCUXEj8PqSsVfF4LCqcVj9z538Iy/pTAiP0hIbVk+0fS/h+ZvR7ssKdCRJOmO6WhANVRSl0w0SFEXZDmwXQsiPbnrA3XffzVNPPdXy6f3WrVtZvXp1hwVRUVERX331FRkZGYwbNw6A5cuXM3LkyJZz1q1bR35+PmVlZSQlJQHw4osv8pvf/Oak9/3rX//KmDFjePHF/9a5K1asIDk5maKiIoYNG3bSa5tfo9nAgQMpLCwE4Iorrmj13Ntvv01MTAzfffcdkydPpqKigvj4eK666iq0Wi0pKSlceOGFgH+qoFqtbhmN6Mj999+PoigMGjSISZMm8dlnn7VM45s8eTLp6em8+eabHd5j1qxZvPHGGyxdupR58+a1ef7VV19l2rRpzJo1C4BHH32UjIwMXn311VYF0R133MGMGTNaHpeWlgL+kbQTR2POO+885s+fD8DQoUN56623WL9+fYcF0fLly7nttttQq9WMHj2aIUOG8M9//pP77rsPgPj4eDQaDeHh4S3ft+aC6OGHH2414nOiP/3pT9x2220sWLCg5djPfvazlt8f/3UNGjSIZcuWceGFF1JXV0d4ePhJ7ytJwUhp8uEqrKEhqwpXfg2KxxvoSO0TgFlDtfooBRXbOLA7L9CJukyrN2BOGYlWn0adPZ4Ghx7LwUCn6p8iY7TEGmqJthYRmrsJbUVhoCNJUq/pUkHUlWLodM6X2mc2m7n22mt57733UBSFa6+9FrPZ3OE1+fn5aDQaxo4d23JsxIgRrd5o5+fnk5KS0qpQGT9+fIf33bVrFxs3bmz3TW1JSUmHBdHmzZtbRicANJr//rGrrKzk2WefZcOGDRw9ehSv10tDQwMVFRUA3HLLLbz++usthcw111zDdddd1+oencnLy2PlypXk5uYycuRIpk+fzoQJE/j666+Ji4sjNzeXu+++u9P7hISE8PzzzzN79mx+97vftXk+Pz+fBx54oNWxiy++mDfeeKPVseN/Np0577zzWj1OSEjocAqazWZjzZo1bNmypeXYXXfdxYoVK1oKoo50li0zM7PD0bjdu3fz3HPPkZmZSU1NDT6f/1P0iooKRo0a1enrS1KgKU3HusNlVeHMq0ZxB2kRpBH4YgVHG8vJKfmOmn19pIo4tidQmHEoTY1J2CyRWC2yv1MgRBm1xIY4iK4pIDR7A5pD+wIdSZIC5lSbKkQAw4BCRVHqhBBjgIcBA/CpoihtF6tIp2XGjBnMnj0bgD//+c+dnq8cmxrR0XoapZ3pEx2dD/5pdtdddx2LFy9u81xCQkKH16anp7cZ+Wg2bdo0LBYLr7/+OqmpqYSEhDB+/Hg8Hn9NnZycTGFhIWvXrmXdunXMmjWLV155he+++67LzQ2ysrLQ6XQtb8iXL1/O1KlTufjii3n88cepra3l+uuv79K97rrrLl599VVeeOGFdjvMnfh9VBSlzbH2ptudzIlfoxCipchoz4cffojL5WoZHWzO4PP5yMvL67Qo6SxbRw0W6uvrufrqq7n66qt5//33iY2NpaKigokTJ7b8PCUpGCk+BXepHWemhYacKhRnEHaFA4RejcfYyIH6InKKNtLQR5oi6MMjMSaNRK1Nw1ETK5shBIKAGJMGs9ZOtCWP0KwNqCsrAp1KkoJGlwsiIcSlwBdAOGAVQtwO/B9wEPACNwkhQhVF6XjVuXRKJk2a1PJmcuLEiZ2eP3LkSJqamti5c2fL1LLCwsJWLZ1HjRpFRUUFhw4dIjExEYDt27d3eN8xY8bw8ccfk5aWdkqjM53ZvHkzf/nLX7jmmmsA2L9/f5tGDQaDgeuvv57rr7+ehx56iBEjRpCdnc2YMWPQ6XR4vR1/gjtw4EA8Hg8//PAD48aNQ61W8+GHHzJlyhQefPBBli5d2uVOaiqVihdffJGbb765zSjRyJEj2bJlC/fcc0/LsW3btrWartgenc4/w7Szr6Mrli9fzmOPPdaqMQPAnDlzWLFiBa+++upp3f+8885j/fr1TJ8+vc1zBQUFVFVV8dJLL5GcnAzAzp07T+v1JOlM8uyvpWGPhYYsCz5HcBbtIlxDQ1Q9pdVZ5BVtwesNzpzHEyoVpqTBhEYPxe1KxG6JoOaoXAHUm4QKjCYNZnUNkUdzCNuzHlVNz2x3IUlno1N5Z/sC8C9gPjAd+CfwlqIoTwMIIf4IPATIgqgHqdVq8vPzW37fmeHDhzNp0iTuv/9+/v73v6PRaHj44YdbveG/6qqrGD58OPfccw9LlizB4XDwzDPPdHjfhx56iHfeeYfbb7+dxx9/HLPZzN69e1m9ejXvvPNOh9kqKytxuVytjplMJrRaLUOGDGHVqlWMHTsWh8PB448/3irrypUr8Xq9jBs3jtDQUFatWoXBYGhpF52Wlsb333/PbbfdRkhISLtTCn/1q19x0UUXMXXqVF5//XXOPfdcsrOz2bdvH2FhYXz44Yc8+OCDhIZ2be+KyZMnM27cON5++20GDBjQcvzxxx/n1ltvZcyYMVx55ZV8/vnnrFmzhnXr1nV4v9TUVIQQfPHFF1xzzTUYDIZurbfJzMzkp59+4oMPPmiz/9Dtt9/OM888w6JFi06rbfj8+fO58sorGTx4MLfddhtNTU189dVXPPHEE6SkpKDT6XjzzTeZOXMmOTk5Qbk/ltS/NVY20JBZiXOPhaZqV+cXBICI0eIwWCk6tIO9OTv6RFOE0GgjMYkjEKo0HNVm6mo11NUGOlX/oVILTGYVZqqIOJRF6E/rUTmqAx1LkvqMUymIzgMeUBTlgBBiMfAc/qKo2Wpgbg9mO2Me++cXgY5wSk7cw6cz7777Lvfddx+XXXYZAwYM4IUXXmjVBEClUvHJJ5/w29/+lgsvvJC0tDSWLVvGpEmTTnrPxMREtm7dyty5c5k4cSJut5vU1FQmTZrU0kL7ZIYPH97m2Pbt2/nlL3/JihUreOCBB7jgggtISUnhxRdf5A9/+EPLedHR0bz00ks8+uijeL1ezj33XD7//HNMJhMAzz//PA8++CCDBw/G7XafdDrg119/zXPPPcejjz7KwYMHGTJkCL/73e+49dZbGTduHHfeeScff/xxp19Ls8WLF3PRRRe1OnbDDTfwxhtv8MorrzBnzhzS09N59913mTBhQof3GjhwIAsWLODJJ59k+vTp3HPPPaxcubJLOY63fPlyRo0a1e5mrDfccAO/+93v+PzzzztsmtCZCRMm8K9//YuFCxfy0ksvERkZyaWXXgpAbGwsK1eu5Omnn2bZsmWMGTOGV199tcvTESXpTGmyuXHuqaQh00Lj4fpAx2mrpSnCEfLLt3Lwp4JAJ+qUSq3BnDwUfeRgXA0DcVSHUX040Kn6D7VWhdkEJt9RIg9kot+zAVV935hCKUnBSLT3BrLdE4XwAfGKolQee1wL/ExRlH3HHg8ADimK0vkwRg8RQkQCdrvd3qZocLlclJaWkp6efsotliVJ6n3y76zUk7y1HpzZVTRkWfCUOyDYBlnUx5oiNJWTs3cTNdZDgU7UqXCjmeiEUUAKtioTTZ5e++++39PoVMSaFIyNh4ms2IV+z0aE2xnoWJIEgDoqimE/ZAQ6BgAOh4OoqCiAKEVRuvwpwamMECm0/i/lxMeSJEmSFDC+hkacOdU0ZFlw77NBkG0VJEJUeExeDjYUk124gYa99kBH6pBaq8WcPIyQiCE01CZQZw2lKvjrtrOCTq8mNsaL0XOQ8NIfCcnZjMrjDnQsSWqXMrDjrU/6glMpiASwXgjR3H4nFPhcCNG8wrPnVtpLkiRJUhf43E04c6tx7rHg2msDb3B9TifCNTRENlBmzSav6HuaCoK7KUKEeQDRA0agkILVYsRuVYM10KnOfvpQNbHRTcQ4K4goyUCXsxXhC9KW71K/J5IHUj0ynqwUhW9iDlAVVsWWzi8LaqdSxCw44fG/2znn49PIIkmSJEmdUhq9OPNrcO6x4Cy0QlNwDQUJowa73krxoZ1B3xRBrdVhThlOSNhgGuoSqLMasMhRoDPOEK4hLtJNTH0Z4UXb0Bb8gAjiPydS/yYGJmAdlUh2isLXxoMUa44CR1uejyIqcOF6SJcLIkVRTiyIJEmSJKlXKE0+XEVWGrIsuPJqUDxB9Om5AGI1VIlD5JVt4fCu4kAn6lCkeQBR8SPxKSnYLDHYa9RQE+hUZ7ewSA2x4U5iHPsIK9iMbu/uQEeSpJMSCQOwjU4iJwXWGg+Rp7UAlkDHOqPkNDdJkiQpKCleBXeJjYY9Fpy51SiuINow9VhThCNNZWQVbcC+72jn1wRIu6NABwOd6uwWGaPFbKgj2lpMWP73aMtyAx1Jkk5KDIjDfk4SucmCteYj5GiPAv2rbXuXCiIhxNfA84qibOvkvAhgFlCnKMqfu3Df5/Dva3S8o4qi9P3VWZIkSdIpU3wKnjK7vwjKqcZX3xjoSP+lEXhj4ZBrL1lF66nbG7yLayLMA4iOH3FsFMgoR4HOsGiTFrPOTnR1IaG5m9Ac3BvoSJJ0UmJALPZRyeSnqlhrOkSWrpL+/g9EV0eI/gV8dKzV9mfATuAQ4AJigFHAr4BrgC+Ax08hQy5w1XGPg2gehCRJktQb3BUOnHssNGRX4XMET+MBoVPhMXs5UF9IVsF6XMV1gY7UrpaOcOFD/R3hbHIU6EwRAmJMGsxaK1GVeYRmbUBtORDoWJJ0UiLWjGN0MgVpataajpCpO4LsltJalwoiRVGWCyFWAf8fMBW4H4hufhrIA74Bfq4oSuEpZmhSFOXIKV4jSZIk9XGeQ3U4syw0ZFXhrXEFOk4LoVfjNnkod+SRk78RT2Fw7vcSbowlJmEkPlL9o0CyI9wZoVIJTGYVJlFN5JFsDHs2oLZWBjqWJJ1USwGUqma96Sg/hRwGbIGOFdROpamCB/jw2C+EEFGAAahWFOV05jQMFUIcAtzAD8DTzZu9nkgIEQKEHHco4jReV5IkSepljUfr/dPhsqpoqgqeQkPozy3U/QAAIABJREFU1bhMHkqtWeQUbMLrDZ5RqmYqtQZzyjD0EUOOrQUKkx3hzgC1RmA2C4y+SqIOZqLfswFVXXDvGSX1byLOjGOULIBOR7ebKiiKYgdO91+IH4B7gCJgAPBHYJsQYrSiKO2t5nqKtmuOTtmBJzef7i26LOmlS3rttU7XtGnTsNlsfPrpp4GOclo2bdrE5ZdfjtVqJTo6uvMLJEk6oxotDTizqmjIstB0tCHQcVqIEBVuUyNl9hyyCzbQlB98RVBYtJGYxFGgSsNmMeGwqXHI9zk9SqNTEWtSMDYeJqJiF4Y9GxHu4CnWJelEzQVQfpqadS1T4OQ/DKcjoF3mFEX56riH2UKI7UAJcC+wtJ1LFp1wPAI46ybuTps2jffee49Fixbx5JNPthz/9NNPufHGG1FOc6+CsrIy0tPT2b17N+eff/7pxgXA6XSSmJiIEIKDBw9iMBh65L7dcdFFF3H48GGiovp+X3xJ6quaqp00ZFXhzLLQeLg+0HFa+NcENVFem0tW/gYaC4Jnqh6AUKkwJQ8hNGoYrvpEHDXhVB0OdKqzi86gJi7GS4zrABFlO9BlfY+qKfiKYUlqJgbEYR+VREGqivWmo+zWyRGgnhZUbbcVRakXQmQDQ0/yvBv/1DoAhBC9Fa3X6fV6Fi9ezIMPPkhMTEyP3dfjOTP/6H/88cecc845KIrCmjVruPPOO8/I63SmsbERnU5HfLxsVChJva3J5moZCWo8EDzNB4RWhSfWS8WxIijY1gTpwyMxJY9CaNJxVMVS59BQ5wh0qrOHIUxDbJSHmPpywksy0OVtR/hk/yYpeIn4OOyjk8hLFqwzHZZd4HqBKtABjndsjdBIoN9/HnbVVVcRHx/PokWLOjzv448/ZvTo0YSEhJCWlsaSJUtaPZ+WlsYLL7zAtGnTiIqK4v777yc9PR2ACy64ACEEEyZMaHXNq6++SkJCAiaTiYceeojGxs6XiC1fvpy77rqLu+66i+XLl7d5XgjB22+/zeTJkwkNDWXkyJFs376dvXv3MmHCBMLCwhg/fjwlJSWtrvv888/5+c9/jl6vZ9CgQSxYsICmpqZW9/3b3/7GlClTCAsL44UXXmDTpk0IIbDZ/vvpydatW7nssssIDQ0lJiaGiRMnYrX6Vx9//fXX/OpXvyI6OhqTycTkyZPb5JAkqX1NVhe13x+g8s+ZHFm8A/t/SoOiGBJaFY2JCvsi81hT9gZrtr7Mzqwv8TQGQTEkBMaB6aScN4kBw+4D7W+pPnIRVQcS8LiC6nPKPiksUkNaYhPnRxTxq0PvMv7LBxny4f+P6d+vEpKzRRZDUtARCQOwXzmG7dN/zsLHErlleg33XZjF0oQ9x4oh6UwL6L+8QohXgc+BCiAO/xqiSOC9QOYKBmq1mhdffJE77riDOXPmkJSU1OacXbt2ceutt/Lcc88xdepUtm3bxqxZszCZTEybNq3lvFdeeYV58+bxxz/+EYDZs2dz4YUXsm7dOkaPHo1Op2s5d+PGjSQkJLBx40b27t3L1KlTOf/887n//vtPmrWkpITt27ezZs0aFEXh4YcfZt++fQwaNKjVeQsXLmTp0qUsXbqUuXPncscddzBo0CCeeuopUlJSmDFjBrNnz+arr/wzKb/55hvuuusuli1bxiWXXEJJSQkPPPAAAPPn/3cp2fz581m0aBGvvfYaarWa0tLSVq+bmZnJlVdeyYwZM1i2bBkajYaNGzfi9fr/U6yvr+fRRx/l3HPPpb6+nmeffZYbb7yRzMxMVKqg+sxAkoJCU40LZ3YVDdlBNhJ0rEX2/rp89uSvx1MUPOuVtHoDsSmjUOsHU1sTR0O9jobgidenRURriQ2tJ9p2bBPU0pxAR5KkDonkRKwjEshNhnUxh8nVVdLfNkINNqdcEAkh9gG/OLHpgRAiGvhJUZRB7V/ZriTgfwEzYAEygF8qilJ+qrnORjfeeCPnn38+8+fPb3fUZenSpVx55ZXMmzcPgGHDhpGXl8crr7zSqiC64oor+MMf/tDyuKysDACTydRmallMTAxvvfUWarWaESNGcO2117J+/foOC6IVK1bwm9/8pmVq36RJk1ixYgUvvPBCq/OmT5/OrbfeCsDcuXMZP3488+bNY+LEiQD8/ve/Z/r06S3n/+lPf+LJJ5/k3nvvBWDQoEEsXLiQJ554olVBdMcddzBjxoyWxycWRC+//DJjx47lL3/5S8ux0aNHt/z+5ptvbnX+8uXLiYuLIy8vj3POOeekX7ck9Sf+Isi/T1DQFUGxXioceWQVbMBTGDxVRlRcApFxI2nypmCrjKbGIj9g6QlRRi1mfS3RNYWE5X6HZv+p7vYhSb1LpCVTNXwA2ck+1kYfpFhbCciRn2DSnRGiNEDdzvEQYOCp3EhRlNu68fr9yuLFi7niiit47LHH2jyXn5/PlClTWh27+OKLef311/F6vajV/h/T2LFju/x6o0ePbrkOICEhgezs7JOe7/V6ee+993jjjTdajt1111088sgjLFiwoNW9zjvvvJbfDxgwAIBzzz231TGXy4XD4SAyMpJdu3axY8cO/vSnP7V6PZfLRUNDA6GhoV36+jIzM7nllltO+nxJSQnz5s0jIyODqqoqfD4fABUVFbIgkvq1pmonDdlVOLOraDwYZEWQuYny2jyyg2hNkFqjwZwynJDwIdQ7Eqm3y81RT5uAaKOG2BAHUVX5hGVvRH24tPPrJClQhIDBqVQOjyUrsZFvog9QrjmMXA0S3LpcEAkhrj/u4UQhxPEtt9XAlUBZD+WSjrn00kuZOHEiTz/9dKtRHwBFUdo0lmivA11YWFiXX0+r1bZ6LIRoKRDa880333Dw4EGmTp3a6rjX6+Xbb7/lN7/5Tbv3bs7d3rHm1/P5fCxYsICbbrqpzevq9fqW33f29XXW8e66664jOTmZd955h8TERHw+H+ecc84Za0AhScGs8Ug9zpwqnLnVQdodLriKoNDIaIxJo0GVjs1ikpujni4BMUYNZp2N6Mo8QrPWo7acdc1kpbOJWo0yNI0jQ43sTnTzTdR+DqsPcBY2QT6rncoIUfPmNApt1/g04i+G2g5jSKdt0aJFXHDBBQwbNqzV8VGjRrFly5ZWx7Zt28awYcNajcycqHnNUPMamtOxfPlybrvtNp555plWx1966SWWL1/eqiA6VWPGjKGwsJAhQ4acVsbzzjuP9evXs2DBgjbPVVdXk5+fz9tvv80ll/j3jDrxeypJZzvP/lqcuVU4c6qDa7PUIC2CjAPTCDeNwO1KwmaJoOrw2dvx9IwTEGPSEKuxEWXJJXTPetRVclhNCmJaLb7h6RwcGs2ueCffRJZTrSoH5GqPvqzLBZGiKCoAIUQp/jVEVWcsldTKeeedx5133smbb77Z6vhjjz3GL37xCxYuXMjUqVPZvn07b731Vqu1Mu2Ji4vDYDDw9ddfk5SUhF6v79aePRaLhc8//5zPPvuszdSye++9l2uvvRaLxUJsbOwp3xvg2WefZfLkySQnJ3PLLbegUqnIysoiOzu7zfqkjjz11FOce+65zJo1i5kzZ6LT6di4cSO33HILRqMRk8nE3//+dxISEqioqGi195MknY0Un4KnzI4zpxpnXjVem7vzi3pJMBZBGl0I5tSR6AxDcFjjaaj7b0MEWQqdIgFGkwaz1kZUZS6hmWtRV8upRFLwEno9jSPT2T8ogh8T6vk2rIxa1b5Ax5J62CmvIVIUJf1MBOlNSS9dEugIp2zhwoV89NFHrY6NGTOGjz76iGeffZaFCxeSkJDA888/32Zq3Yk0Gg3Lli3j+eef59lnn+WSSy5h06ZNp5zpH//4B2FhYVx55ZVtnrv88suJiIhg1apVPProo6d8b4CJEyfyxRdf8Pzzz/Pyyy+j1WoZMWIE99133yndZ9iwYXz77bc8/fTTXHjhhRgMBsaNG8ftt9+OSqVi9erVzJkzh3POOYfhw4ezbNmyNq3IJamvU7w+3CV2/3S4vGp8dZ230+8twVgEhcWYMSaOwkca1kojtirZEKFbmkeAtDaiKnMI270WVc2RQKeSpJMSEeG4RqZRnh5KRpyDdWFluERxoGNJZ5hob81JpxcJcSX+NUNxnLCXkaIoM9q96AwQQkQCdrvdTmRkZKvnXC4XpaWlpKent1pvIklScJJ/Z3uez+PFVViDM7caV0ENiit49l8RISo8puOKoEDvDyQEpoHphBlH4moYiKM6PLB5+qpWa4DkCJAU/IQxhvpRKZSkhbDZXM1mQwVeTv29cX8WFRLFltuCY7mBw+FonvUUpShKl7e47k7b7fnAs8BO/C0z5J8aSZKkIOGtb8SVV+0vgvbaoOnkTVF6mwhR4zZ5KHPkklOwkcYCV0DzaHQ6zKmj0On9U+Hq63XUB08fib6huQuczk508xog2QRBCmIiMR77iEQKU1RsMlayI+QQkBvoWFKAdaft9kxgmqIoq3o6jCRJknTqmqwunLn+IshTbofgqYEQejUuk4cyWzY5BRtpKghs90Z/V7hzUEQ6tkojtqqTN6CR2hdt0hKrs/nbYGeulQWQFLyEgPRkqofFkTPQx/qYQxRoqwC5DF5qrTsFkQ7Y1tNBJEmSpK5rPFrf0hQhmPYIAhAGNS6jm1JrNjkFm/B6A1sExSSkEGEeidudLLvCdUNUjJZYvYPo6jxC96xHc1R205KClEaDb1gaR4YYyUx0801kBYfVh4BDgU4mBbnuFET/A9wBLOzhLJIkSdJJKIpyrD12Na7c4GqPDSBCNThjnJTWZJFbuAmvtylgWVRqDeaUYegjh1NnTaShNgTnsUEMWQp1LjJaQ2xoHdHVBYRlr0dzSHbUkoKTMBjwjEpn/6BwdgyoZ114OXZRhtwWUzpV3SmI9MADQoirgCz8exC1UBSley3FzpDuNI2QJKn3yb+rbSleBfc+m386XF41PkdwbRYsIjTUR9RRUrWb/LwtKErg5uqFhIZhThmN0A7GbonDYVPjsAUsTp8SHqUlLqyOGGshYdkb0ByQHbWk4CSMMTSMTGZfagjbzXY2hZbjEUWBjiWdBbpTEJ0HZB77/TknPBc072i0Wi0ADQ0NGAyGAKeRJKkzHo//zX5Hmwr3B0qjF1eR1T8drqAGxRm4kZb2iGgtjlAbxYd/pDh7BwSwkI0wxRGdMJombxq2o9FUH5XjP10RFqkhLtxJtL2YiJyNaMrzAh1JktolkhKwDU+gMFnFdy0NEOSfV6nndWcfosvPRJCeplariY6OprKyEoDQ0FCEkP9ZSlIw8vl8WCwWQkND0Wi68zlN3+ZzNuEsqMGZU4W7yIrSGERdEQBh1GILqSL/wHbKd+8JYBCBKWkQYTEjcNYPpLYmHMvBwMXpKwxhGuKi3MTUlhCR9x3akszOL5Kk3qZWowxOwTLUTFZiI+ujD1GisQCWQCeT+oGz+p1HfHw8QEtRJElS8FKpVKSkpPSbDy68djfOY+2x3aV28AbNALt/oY1ZQ7X6KPnlmzm4qzBgUdRaHbGpI9GFDsVRE099nY764OohEXRCQtUMiG4kpr6UiMLN6Ap2BDqSJLUh9HqahqdxYHAku+IbWBtRQbVqP7A/0NGkfqg7+xBtpIOpcYqiXHFaiXqQEIKEhATi4uJobAyeXdklSWpLp9OhUqk6P7EPa6xsONYeu8rfGS6IaiDUAl+s4GhTOTkl31GzL3BDL/rwSEzJ54AqHZvFjK1aDdUBixP0dHo1cUYvRmcFEXu3oftuC0KuyZOCjIiKxDkylbI0A9vjbGwMrcAl9gY6liQB3RshOnGsXQucj3890XunnegMUKvV/X5dgiRJva+5M5zrWFOEJkuQdYYLUeMxNXGgvoicog007O3ypt49LiougcgBo2nypGCtjKL6SP8YKewOjU5FnEnB5DlIxL4MQjZ/hwhgVz9Jao+Ij8MxciBFyRq+N1nICDmAIvIDHUuS2tWdNUSPtHdcCPEcEH66gSRJkvoypcmHe5/dPx0uGDvDhWtoiGygzJpNbuH3eAO0UapQqTAnD8EQNZyG2iTqbAbk/p7tU2sEsWYVJu8hIst3ot+2AeFxBTqWJP2XSgWDU7AMMZOb6GNDywaoNYFOJkld0pNriN4HfgT+0IP3lCRJCnre+kZcBTW48qtxFdtQ3N5AR2pFGDU49DaKj+ykOOfHgHWG0+oNmFNGodEPwV4VR61DS23gBqWCllCB2azGjIWoA7vQZ6xF5aoPdCxJatG8/ufgoEh+ineyLmI/leoDgPxUQ+qberIgGg/Ij6wkSeoXGisbcOZV48qvwVPhCK71QCpQYtVUcYi8si0c2RW4efrhRjMxiaPx+tKwVsZgtZzd68S6RYDRpCFWU0PU4T2E7lyLyiEXTUnBQ8RE0zAihbJUPRlxdjaEluGW63+ks0h3miqsOfEQkACMBRb2RChJkqRgo3gV3GV2XHn+/YG81cH1+Y/QqWg0+zjsLCG7eBO1JVUBCiIwDUwnzDgCV0MSjmrZGrs9UTFa4gx2oitzCM1ch7pKfpOk4CEG+vf/KUpRsSmmkh16uf+PdHbrzgiR/YTHPqAQeFZRlG9PP5IkSVJw8DU04iq04iyowVVoRXEF18J1EabBGe2k3JpDbtH3NBYGpkjThugxp4xEaxjsb41dr6NezvBqxb8ZagNGayFhWevQHJSfrktBQqWCIalUDjWTndDEhuhDFGvl/j9S/9KdpgrTz0QQSZKkYNB4pN5fABUcmwoXXHukIoxa7Poa9h7eSXHujoCtB4owDyA6fiReXyq2yhisVXIq3PFCDGoGxDRirN9HeN536Db9FOhIkgS03v/np/gG1kbsp0ru/yP1c91eQySE+DkwEv/M+TxFUXb3WCpJkqReojT5cJXY/E0RCmrwWt2BjtRa83og5RB55YFbD6RSqzElD8UQOYyGukTqrKFyKtxxNFoVsWYFs+cAEXu3EfL9ZoQvuJprSP2TXP8jSZ3rzhqiOGA1MAGw4V9DFHVsw9bbFEWRY6ySJAU1r8ONM99fALlLbCie4BoGCpb1QP4NUkeh0gzCXmWm1q6h9sRJ0/2UUIHJrCFWHCWqYieG7WsR7uDaZ0rqn0SSf/1PYbKK7+T6H0nqku6MEL0JRAKjFUXJBxBCjMK/Kesy4PaeiydJknT6FN+xDVKPjQI1Hg6+BS4iXIMzykm5LZfcwu8Csh5ICBXGpHTCYobhdg3EbomQG6QeJypGS5zeRvTRbEJ3f4PaWhnoSFJ/p1ajDEmlcoiJ7MRG1kUfZJ9Grv+RpFPVnYJoEnBVczEEoChKnhDiIUA2VZAkKSj4GhpxFVtxFVhxFdXgqw+uhghwbD1QSDV7j+yiOCcw64EMEZEYk0ah0qRhr46lvk5LfV2vxwhKhnANAyJdGG2FhGevR7O/MNCRpH5OGAx4RqZxID2CnfH1rAuvwKqqACoCHU2S+rTuFEQqoLGd443HnpMkSQqIYG+IgFqgmFVYlIPklW7haGlJr0cQQoUpaRChMUPlKNAJNDoVA8w+TM5yIgu+R7cpI9CRpH5OmIzUj0xmX4qObbFWvjfsxyOKAx1Lks463SmINgBvCCFuVxTlEIAQYiDwGrC+J8NJkiR1xOfx4m5uiFBoxWsLsoYIgNCr8RibONhQTE7RJur3Wns9gyEyGuPAEag06dirYqmr01AnR4EQAkyxGmKpJKriRwzb1iI8wbW/lNS/iJSBWIfHk58EG41HydQdAXIDHUuSznrdKYhmA/8GyoQQ+/F3mUsBsoG7ejCbJElSG42VDbgK/dPg3KV2aApM2+mOiCgt9WG1lNZkkV+0Fa/X06uv7+8INwRD5FBczgTsVeFyFOiY8CgNA8LqiLHkEPbT16irDwc6ktRfaTQoQ1M5OtjInoGNrI06QIX6KHA00Mkkqd/pzj5E+4ExQohfAyPwd5nLUxRlXU+HkyRJ8nm8uPfacBVZcRUGYVtsaJkKV80RCvdncCCz9zs6hRtjiY4fgSJScFSZWnWE68+lkDZExQCTD1P9PiJyN6DbJHeIkAJDGAx4RqWzPz2cXXH1fBtRjl1VDpQHOpok9Xvd3odIUZS1wNoezCJJkgQcNwpUWIO7LEhHgcI0uKJdHKwtIrf4exr29m4/arVWhzl5GCHhg2moS6DOGkqVHOxomQYXx1EiyzLQb1uPyhOERbR01hPGGOpHprAv9fj1P0WBjiVJUju6sw/RMmCvoijLTjg+GxiiKMrDPRVOkqT+wedu+u8oUJE1OEeBBGDWYNNUUXL4J/bm7uz1rnCRcQlExY3A50vGZonBblVD7y9JCjphkRriw/3T4MJ3fYWq5kigI0n9kEhKxDY8nsJkFZuMlewMOYRc/yNJfUN3RohuBq5v5/g24ElAFkSSJHVIURQaD9UfK4Bq8FTUgjcIR4H0ahqNXo64ysgt+R7bvt4dgtHq9ZiSR6AzDKbeMYB6ux7LwV6NEJQ0umPT4JxlROZtRLdpZ6AjSf2NSgWDU6kcZiY7oYl1MQcp0VQCcm8qSeqLulMQmYD25oY4APPpxZEk6WzlrW/EXWz1T4UrtuKra697f4AJwKTFoa2h1LKHosIMfD5vr0aIjk8mInY4TU1J2CzR2KrkbgYIMJk1xKosRO/fiWHb17IbnNSrhE5H04h0Dg2K4qcEJ2sj9lOp3g/sD3Q0SZJ6QHcKor34N2d964TjvwH2nXYiSZLOCopPwVPhaJkG13iwzt+TMsgcPwqUv28zNfsO9errh4SGYUoeiSYkHYd1AK46Ha4DvRohKIVGaBgQ0YCxOp/w3V+jrpQbT0q9R4SH4R6ZTnl6KD/E1bIurIwGVe/vGyZJUu/oTkG0FHhLCBGLf08igCuBx5DT5SSpX/Pa3S0FkKvYhuJqCnSkto6NAtXqrJRa9lBYuL1XR4GEUGFMSicsZigedyI2SxQ1lf25D5yfWqsizqxgdlcQVfAduk3bAx1J6kf8G6CmUJKmY4u5hs36CppEQaBjSZLUS7rTdnuFECIEeAaYd+xwGfA7RVH+0YPZJEkKckqTD3eZA1eRf2PUpqMNgY7ULmFQ44lp4oirlIJ9W3t9FCg0MhrjwJEIdSr26jjq6zTUy41RiTFridNUE31gJ4aMr1G56gMdSeonxMAEbCMSKEhWscl0lF26w0BOoGNJUp8gEMTqTaSGxJCi0jOUkEBHOm1COY0uScdGiZyKogTkv3YhRCRgt9vtREZGBiKCJPU7TTUuXIU1uIqsuEvsKJ7eXWPTJcc6wtk11ew7mknxvh9RFF+vvbxKrcGcPBR91GCc9Yk4qsMQ/Xo3IL/QcA0DIp0YrfmEZ36L+nBpoCNJ/YEQMCgFy7BYcgb6WBd9kGJtdaBTSVLQM4XEkKo3kaIykOpVSHHWkeqwkFJTjsFz3AeghhiYWxawnMdzOBxERUUBRCmK4ujqdd3ehwhAURTL6Vx/PCHEU8CLwBuydbckBQ+lyYe71I6rwF8ENVmcgY7ULhGmwR3t5lB9CXklW6jd12P/PHVJdHwyEeah+JQkbJYYHHY1jn6+MaqmeRqcq5zIwu+R0+CkXqHR4BuezpEhMexOcPFNZAVH1AcB2aJRkk4UqYsgTR9LijqUVC+kuhtIcVSRWlNBuKv/rN08rYKopwghfgE8AGQFOoskSdBkc/tHgQpqgncUSC1QzCqswkLJ4Z/Yl/tTr+4LFBoVQ0zicFSaVGqtsbjqdbj6+/utE7vBbf8G4Q7OAlo6ewiDnsYR6ewfFMGO+HrWRpRjF6WAHIGUJIBQTSiphlhSNOGk+lSkup2k1lWTWr2f6Ib+U/R0JOAFkRAiHPgAuB/4YyfnhkCriYoRZzCaJPUbilfBU+7AeawICtq1QNFa6kPrOGAvIL9kG669XR4NP23aED2m5GHoQgfhrB9AbU0Y1XL/TyJjtMQZHERbcgnb/S3qqv5eFUpnmoiIwDUqjdJ0A9vjbGwILcctigMdS5ICKkQdQrIhjlRtBCmKmjS3m5R6K6nWA8Q6KgDZJKQjAS+IgD8DXyqKsk4I0WFBBDwFzO+FTJJ01vPWefx7AhXUBG1HuOaW2BbPfgrLf+Boae+1vVWp1RgHDiI0ejCNnkRslkhs1Sro50sPDGEa4qJcGB3FRGRvQLMpL9CRpLOcvwNcMsXHOsBtMVTgJT/QsSSp12lUGpIMcaRqo0hBS2qjh9R6G6m2w8Rb9yKQHwx0V0ALIiHEbcDPgbFdvGQR/rbfzSIAuWOHJHWR52AdroIanAU1NB6oDb59gVSAyd8MobQyi+LCH3q1JbZ/HdAQFCUJW5WRulo1dbW99vJBSRuiIs7kw+QsJ7JwM9r8DEQvTk2U+h8xIA77qCQKU1VsNFayM+QQkBvoWJLUK1RCRbze7O/gJnSkNXpJabCTZjtMorUCjU9u+XkmdKsgEkJciX/voTj8b2FaKIoyo4v3SAbeAK5WFKVLW44riuIG3Mfdo6uRJalfUhq9uIpt/lGgwhq8dk+gI7UhorQ0hNdzyFFMwb6t1JVYe+21w41mouKHoVKnUGs1y3VANO8HBMamQ0SW7SBkywZUTcH350Y6e4ikRKwjEshLhnWmI+RojwI1gY4lSWeUOcRIqt5EqkpPapOPVGcdqY6jpFSVo/OWBTpev3PKBZEQYj7wLLATOEz3P2P+Of6CatdxhY0auFQIMRsIURQlCFdyS1Jwa7K5cOUfa4iwz47S2Hvtprvi+GlwRRU/cKQXp8HpwyMwDhyOJiSVekcc9XYD1Yd77eWDklojMJsFZu8RIst3ot+zQTZCkM4okZZE1fB4cpK8fGs8RLGmEqgMdCxJ6nFRukhS9bGkqg3+Dm6u+mNtq/cT5pbNDIJJd0aIZgLTFEVZdZqvvR4494Rj7+Jf9bVYFkOS1DWKT8FT4cBV4F8P1HgkyDa3VAswq7EKC6WVe9hbsKPX9gT6byOENFzOeOxVYdRU9u+RZZVaYDbFolrkAAAgAElEQVSrMCtHiTywG/0P61A55S6x0hnSvAfQ8Dj2DGzkm+gDlGuOALIjiXR2aO7glqoJJ8WnIs3tJKW2mrSaCqJkB7c+ozsFkQ7YdrovrChKLSdsCy2EqAeqFUWR20VLUge89Y24i6w4C2twF1nxNQRXQwQRraE+rI4DtsJe7Qan1mgwJg3GEDmIRncCtqrWjRD6YymkUgtMZhVmqog8uBvDznWo6uyBjiWdrVQqGJLK0WFmdic28k10BQflHkBSH6dT6UgOjSNVG0mqoibV4yalzkqa9aDs4HaW6E5B9D/AHcDCHs4iSVIHPIfqju0NZMWz3wFBNBNOGNR4YpqodFdQWJbx/9i78xhJ8zyv7+/f8zxx30feVXlf1T2sFgMyBswhIYyQDGZtfMnyslq81uLV2gYZ7wokDmu8kjELCHZBAgQLi7CQvVyCWZbpOfqc6bu6u46svO8jMiPjviMe/5FZPTVN90xVdmZGZMbnJaUq48nMeL45R1V84vf7fb9k1jeu577GIjE6QSg5Q6c9Ru44TjFvU+zj1/tPV4BSbuY8AL2iACRXx7Zx5yfZn0vx/midX49tcGRtA9vdrkzkhTjGYTQwwLg3xqTxMt5oMlHJM3G6x0huDctd6XaJcoUuEoj8wE8ZY34/Z4NUm89+0XXdP3XRYlzX/b0X/VmR26bTaFNf6dGGCOdDUXNWhrX9+6w+evd6tsEZQ2L4LuHUDB13jGI2SaXiUOnNsUnX4tMAxBGxnQ/wv/MKVvn65jNJn3EcOgtT7M0leHe0yr+NbHJibQKb3a5M5IcyGIYDaca9CSYtH+PNNpOVAuOFQ8ZOtvCog1vfukgg+hHgw/PPv/KZr6kXq8iX0DqtnbXFfnTWEIFW7ywDmbjnfBvc9Q5FjQ2NEknPgrlDIZuiWvVQ7ePdN5+eAeKIyPb7BO5/QwFIro7HQ2dxit3ZOG8PV/j16AZ5ax1Y73ZlIl8o7Usy7k8yaQUYb3WYrJYYLxwxfrKJr6XwLv++Fw5Eruv+vqsoRKQffa8hwlkIah32zlKH8Vq0Ui6Z1jZLm9+5tm5wkfQQscE5jH3n01bY9b1ruXVP0gqQXCfj9dJanGJnLsbbw2V+I7JJ3uhdc+k9UW+ESf8A43bwvINbhYlihomTLXVwkxf2pQazGmPuAK7run38fq3Ii+nUWtSenJ61xn6SpVPukYYIBkh5KHpO2Tj5mKWV79BeuvptepHUINGhWSz7LqV8mmrRx3Eft8JWAJLrZLxeWvem2Z6N8p2REr8R3qBkrq8VvsgPErD93A0MMuGJMNmxmKjXmCidMHGyRUId3OQSXWQOkQX8OeBPA+Hza0XgrwBfda+rn67IDdI8rp4FoEcn1DcL0O6N3aVnzRCaHFTXebj2Brm1q08i4eQAsaE5LOcO5fwAlaKvr2cBfS8AZc4D0NcVgOTKGJ+P5kvTbM1G+M5Qkd8IbVCxdFhcuscxDmPBASY8cSZwmGw0mCifMnG6x1B+GcOTbpcofeAiK0RfBX4S+DngDc7eV/6dwF/grOHCn72s4kRuKrfj0tjIU32cpfYoSyvTI4MuDZB2yDsnrB5+wMqjq58JFE6mzwKQ5y7lXJpK0c9JH48gsWzDQNoi5R4R2dEZILlaxu+n+dI0mzNh3hoq8vXQBhVrudtlSR9K+5JM+FNMWn4mW20mKyUm8vvcUTMD6QEXCUQ/DvwJ13X/5TPX7htjdoFfRoFI+lSn2qL25OwsUG3pFLfaG1vhnq4C7VfXebj6Gvm1wyu9XzCeJDE8h+0dp1xIU84H+joA2c75ClDngOjOh/g/0CBUuTom4KdxHoDeHCrw9dAGNaN32OV6PB1SOulEmOgYJmsVJgsZJrJbhGva4ia96yKBKMnnT6B6fP41kb5xthXuhNqjLPWNAnR6YCucAVIOeW+WtcMPWH709pWuAgUiMRKj8zi+u1RKQ5ROA5xcbebqaY7HIp2CZPuQ6Pb7+D98BatW7nZZckuZQIDGy9NszIR4YzDPK6EN6gpAcoVsYzMaGGDSm2ACh6lmk8nSKROnOwzlH6MhpXITXSQQ3Qd+BvjZz1z/mfOvidxabrtDfeOsK1ztce9shXs6GPWwtsGD1deu9CyQLxQmObaAxz9OtTxIMRsie3Rlt+t5voDNQKJNorZDZONdvJ+8itWod7ssuaVMKET9pUnWZ0K8OZjnleAGDbPU7bLkFop5o0z5B5i0g0ydt66ezO9z92QLT1tt1+V2uUgg+jPAvz4fzPoWZ7OHfgdwF/hDl1ibSE9oFxvUls4CUG05h1tvd7ukZ84CZVk7+oCVx+/Q6VxNXR6fn+SdOXyhKWrVIfLHYU4z5krudROEog4D4Rrx0gbh5bfwPP4uxu2BlUG5lUw4RO2lKdang7w+eMo3gpu0FIDkkjxtaDDljTPpOkzV60wWT5jKbpEoa4ub9I+LzCH6tjFmHvifgEXOXpr9GvDLruv28bQQuS1c16W5UzpriLCUpblb6omRwyZoU483Oaiu8XD19Ss7C2TZDsk70wRjMzQbI+QyUfJZC7LndVzJXXuUgXjSQ8pXJH76hNDD13A2H3a7KrnFTDRK9eVJVqf8vD6Y5dv+LVpGW5Dky4l4wkwGBpmyg0y1XaYqJaby+9w93lRDAxEuOIfoPPioeYLcGp/OBnqcpfbklE6p2e2SwALSDjn7mNX9D1h9+O7VnAUyhsTIOJHULO3OGPlMglLBptSHjc9sx5BKWSQ5Jnr4gOD9b2Jl+7gjhFw5E49ReXmSlUkvrw5keT2wRRuFbnlxBsNIYIApX5IpPEw1GkyVTpnKbpEuboH+dyXyhZ4rEBljfgT4xHXdzvnnX8h13Y8upTKRK9Y8KH+6CtTYLPZEQwQTdKjH6+xVVnm48hrF1eMruU84mSY+vIix71LIpqlWPFR3ruRWPc0ftEnH2yTqu4Q338f/8bcx9d44Fya3k0kmKL80wZNJD98eOOZN3zauedDtsuQG8VpeJoLDTHkiTHcspmtlpvJHTJxsEGhsdrs8kRvpeVeIPgSGgaPzz10+f+eMC9iXU5rI5erU29RXTqktnVJbytLON7pd0qdngXLO2SrQysN34ArOo3j8AdJ3F/AEpqiUhimdBjjuw2Go0YSHdKBMrLBG6MlbeJbf0/kfuVImlaT08jhPJj18M3XEd/y7wCfdLktugIgnzHRgiGk7yFSrzXSlyNTpLmPZdWxXw3RFLtPzBqIpIPPM5yI3QvOo8uk2uPp6Htrdf/H7dC7QXmWVR6uvk1+7/BZtxrJI3ZkhGJ+lWR8ll4lyetxXp3+wbEMqbZEyWSJHDwl+8ir2kQ4Jy9Wy0kmKL43zeNLhm+kMb/sUgOQHG/AnmfalmTZ+ppsNZkqnTB1vki5pm5vIdXmuQOS67rNrsBPAm67rft/USWOMw1m3Oa3XStd06i3qq3lqy2crQe1srdslfW8ukOdq5wJFB0aIDc7jcpf8SYpS0aZUvPTb9Kzv2/62/SG+j76t+T9y5ax0ksLL4zyecPhm+oh3fHsoAMlnGQyjwQGmvSmmcZip15kqHjN9vE60qjdqRLrtIk0VvgmMcLZ97lmx869py5xcG7fj0tgpUl/OUVs+pbFd7I1VIL9NI9nioLbOw9XXyK1d/sF8fzhKcmwBxzdJKTdIpegj0y99Hg3EEg5pf5loYY3Qk+9o+5tcC5NMUPrKBEuTHl5JHfKOXwFIvscyFmOBQWa8SWawmalVmckfMnW8rvM9Ij3sIoHI8PlNiFOA3o6VK9fK1c62wC3nqK/m6FRaP/yHroFJeSh4T1k/vs/S0luXPhfI9nhJ353HF56iVh0mfxwme9Qf2+Acr0U6CclOhvDBJwQ++TZ29mrajos8y8RjlL8yyZNJL98cyPCWfwcFILGMxZ3AEDO+BDOdp8HngKnjdfzNjW6XJyIv6LkDkTHm184/dYF/YIx5dhS7DfwI8OYl1iYCnDdDWD1bAaov52gd90YXMOO1aKU6HDS2eLT+Oifr25f7/MYiMTpBKDlLuz1GLhMnf2rB6fnXL/VuvSUSd0gFa8TLmwTX3sH38C1MuzeCr9xuJhql8pVJVqZ8fGvwhNd9W+oC18cMhrHgELPeJLPYzFSrzOYPmMqs4WttdLs8EbkkL7JClD//0wBF4NlXpQ3gO8DfuaS6pI/16jY4AJNyKPjybJ58wuPlN2kvXW6nulAiTWJkEWPdJX8yQKXiUKlc6i16juOxSKUMCU6IHD0i8Oh1nP2NbpclfcKEQ9RenmZlJsCrg1leDWxqDlAfejrDZ8aXYhaHmVqN2fwh08dr2uom0geeOxC5rvsTAMaYDeD/dl1X2+Pk0rROqtSWc9SXT6mt5nFrvbEaYPw2zWSbg/oGj9fe4GT9cof1ePx+UncW8IamqRSGKOWCt74d9tPVn1h5i/DGe3gevInV6oEW6NIXTCBA/SvTrM+EeH0oxyuBDVrmUbfLkmuU9iWZDaSZxcdcvc5sIcNMZo1QXcFHpF+98Bki13X/4lUUIv2lU2lSW82drQKt5HqjGxx8Ohco72RZP/qQ5aW3L/UskDEWyTtThOKzNJqj5DMxcicWnFzaLXqK47VIJQ0J95hI5jGBB6/hHOpFh1wf4/fTfGmajdkwbwwV+HponbpZ6nZZcg2i3gizgSFmrQCzjSazxRPmMuvEK+rqJiLf7yJNFTDG/BfAfwmMA95nv+a67n9wCXXJLeO2OzQ2i2ftsFdyNHeKn9+aowtM0KGeaLBfvpq5QOFkmvjwIljj5LMpyiUP5dKl3qJnhGMOqVCNeGWb0Pq7eLX6I9fN46H90jRbczHeHCny74IbVKwn3a5KrpDf9jEdHGHOiTDX6jBXzDJ7sslg4QGg818i8sO9cCAyxvws8FXgV4A/Avx9YAb4bcAvXWp1cqM1jyqfNkKor+VxG5fbde3CbIObtjg1GVb332ft4ftwie2aP90GF5ymUhymlAvcym1wlm1IpSyS1inR48cEHr6Gs7fW7bKk3zgOncVpdubjfHekzK+HNyhaq92uSq6AZSzGg8PMeRPMdSzmKgXmsrvcPVnFcpe7XZ6I3GAXWSH6k8BPua77T4wxPw78X67rrhlj/hKQvNzy5CZpl5vUV77XDa6dr//wH7omJupQjVTYKTzh0crrVFbyP/yHnve5P+0GN0erOUbu+HZugwuEHNKxJonaDqHN9/F/8hqm3hsd/6SP2Dbu/BS780neGavybyLr5C0F8dsm6UswHxhgHj9z9RpzuQNmMqtqaS0iV+IigWic77XXrgKR88//EWed5n7mEuqSG8BttqlvFKiv5qktn9LcK/XMNjg8Fp0UHHf2eLLzNrv3L/fQdCiRIj6ygLEnKJykqVQ8t64bXCzpkPaXiOVWCS69gXf1frdLkn5kWTA7wf5CmvfGGvyb2AbH1gaw0eXC5DJ4LA/ToVHmnQjzrQ7zxVPmM+ukS/r7RkSuz0UC0QFnQ1g3zz9+O3AfmOJ2j0bpe27bpbF9FoDqqznqWwVo9UgCOm+GUHRybJ0+5MnKd2g8ubzVC28gSOrOAp7A5Kfb4E5u0TY4yzak0hYpc0Lk8CHBj7+Ffbzb7bKkHxkDU+Mc3Rvk/bEGX4tvsm9vA5c750uu34A/ybx/kHk8zFcrzJ/uMZVZw9PRFkcR6a6LBKJvAP8p8D7w94C/et5k4bcCv/aDflBuFrfj0twvn4Wf1Rz19ULvnAMCTNxDJVRir7DC0tpbFNcub4+aZTuk7swQiE3TqI+Sy0Q5Pb49ed/rtxlIdEg09whvvY//o29j1dRJX7rDTNzh+N4w9++2+Vp8m01nF1Agv6kcy2EmNMaCE2W+1WGheML80RrJsrq7iUhvukgg+inAAnBd928bY7LA7wL+FfC3L7E26YLmUYX66lkr7MZ6nk6lN+YBAZiQQz3W4Ki2ydLmdzhev9x/XOPDd4ik5+m4Y+QzSYoFm2LhUm/RNf6Qw0CsSaK6RWT1u3gfvIFp985/t9JfzN1RsvdG+Piuy79N7LLsOeBs84HcNElfnPnAEAv4WKhVmD/dZ/poBU9H57pE5Oa4yByiDtB55vE/Bf7pZRYl16eZqVBfy59/5OgUm90u6VPGZ9NKdjhp77O6+x5bn3xyqc8fSqSID89jOeMUTweolb3Ubsmb0qGow0C4Rry4Tnj5DTxL72IusZOeyIswYyOcvjTKx+Muv5HYY8lzBFxue3u5WpaxmAiOsOCNs9CCxXKOhcw6A4WPul2aiMiX9lyByBjzI8/7hK7r6m/HHtY6qZ6Fn9WzVtjtQg/NiPFYuEnDqcmwcfQRq0/evdShqN9/DmiIUi7IyS15Uzqa8DAQKBHLrRB6+CqejcsNjyIvwowOc/rSGJ+Mw28kd3nsyQCZbpclzynoBJkLjrBoBVloNFjIHzJ3tEKgsdHt0kRErsTzrhB9yFn/sB92iMIF7C9VkVyqVq72vSYIa3naud5phY1lIG1TsLNsnTzkydp3aT6pXdrT245D6s4c/ug0jfoIuUzkVpwDMgaSaYeUkyOWeUTgwbdw9je6XZb0MXN3lNPFER7cha8n9nngPQKOu12WPIdBf4oF/wCLroeFapHFk23Gj5cwPO52aSIi1+Z5A9HUlVYhl6aVr38afupredrZywsYX5oBk/RQ8hfYzT9hafVNKquXd0jHsm0So5ME49N02qPkjuMU8jaFyxs51BW2Y0inLJJkiOx9TPD+K1iFWzbkSG4OY2DyDscLQ3x8p83X43ssawtcz7ONzURwmEVvgsVWh4VilkU1OhARAZ4zELmuu3nVhcjFtAsN6mu5s1WgtRytkx4KQICJOVTDVQ5Kazxef4v82uGlPff3B6AR8scJyiWbcunSbtEVHp/FQNIl2dwnsvUe/vvf1ABU6R7LgpkJDufT3B9r8uuxbXacfeAW9Z2/ZQJOgPng6Kdb3hZzB8wdreBvrne7NBGRnvTCTRWMMf/9D/q667r/8OLlyA/TLp4HoLU89dU8rePeeqFsQg6NWIOj+jZPtr7L0frl/QP8NACF4tO02yPkT25HAPIGbAYTbRK1bSLr7+D9+DWsVg+d7ZK+YrxeWguT7E/H+GC0zr+NbHGkOUA9K+VLsBgYYhEPi5USC9kdJo6XsdylbpcmInJjXKTt9l//zGMPEAQaQAVQILoknXqLxk6J5k6Jxm6Rxk6pt7bAcbWd4CzbJjk6RTA+dasCUCDkMBBrkKhsEl5+C++j72AusXmEyIsw0Si1exNsTAZ4e7DAK8FNKpZaJvcag2E8NMKCN8FiGxZLORYzawwU7ne7NBGRG+8ibbcTn71mjJkD/hbwly+jqH7kNjs09ko0d86CT2OneLb602Odko3fppXokO0csHHwMetLH3DWif3Lsx2HxNg0wegUrfYw+eM4pZJN6YYHoO9rgb30Ot4n73a7JOljZmSIwsIoT8ZtXk+d8KZvG9c86nZZ8gyf7WMmOMI9J8JCo8liPsP80Qqhunavi4hchYusEP17XNddNsb8HPCrwOLz/pwx5qeBnwYmzy89AP6S67pfu4y6elW72KB5VKGVqdDcLdPYKdI8rECnx9IPYAI2rUSbk9YBGwf32Xj80eUFII+H5NgMgegkzeYIheMopYJN6YYPQw3HHAZCFeL5FcKPXsOzpk700iW2DTPjZGbTPBht8434Ho89x4CacvSKuDfGQmCIReNjoVph8XSPqcwqTme526WJiPSNSwlE59rA6Av+zA7wc8DK+eMfB/6FMeY3u6774BJru3Zux6WVrdF6GnyOqp/+6dZa3S7vC5mgTTPe5qS5z/rBfTYffQSXNNDT8XpJjs3gj0zSbAyTP45RzFsUb3gXuKczgOKnTwg9+BbOltrVSneYUIjG4gQ7U2HeG6rwSniLE0vnf3rFWHCIRV+KxbbFvXKehcw6w/mPgY+7XZqISF+7SFOFP/zZS8AI8DPAGy/yXK7r/qvPXPqz56tGv52z1aIbpfJRhurHx2erPydVaPXeis9nmYhDI9LguLHL+t6HbK8/vLTndry+8wA0RbMxRO44SiFnUchd2i2un4F40kPaWyCefUzwk2/h7K788J8TuQJmaJDi4hgrdx3eTGd53b9Nyzzpdll9zzY2U6FRFj0xFlsu9wrHLBwuE6uqxbWISC+6yArRP//MY5ezEeTfAP70RQsxxtjAHwNCwFtf8D0+wPfMpchF73cVakunVD/u7WGEJuZQC9c4qm6xuv0+h+url/bcHp+f5NgMvvAkjfow+ePIjQ9AlmVIpm1SVpbo0QOC91/BPlG7YekCyzrb/jY3wIORNt9IPN3+lu12ZX3NZ/uYC41yzw6zWG9wL3/I3OGyWlyLiNwgF2mqYF1mAcaY38RZAPIDJeCPuq77RcsUPw/8+cu8/61mwCQ8VAJlDkrrrGy9Q3Z999Ke3hsIkhidxRcap1EbIn8SIX9qweml3eLa2R6LdAqSnSNiu/fx3/8GVukGJzq5sUzAT3Nxit2pCO8PV/l3kS2OrR3OdhpLNwRsP/OhMe5ZQV6q13kpu8vM0bLO+4iI3HBf6gyRMcYAuO6XOmSyBPwoEAf+c+BXjDG/5wtC0S8Av/jM4wh6dfA9loGUTclTYL+4yvL62xTXLm/FKpRIERuawfHeoVZJUzgJkc+aG/0GtddvM5Bsk6zvEd58D/9H38I0equ1ufQHk0pSXrzL+oSPt9KnfCu4RcPohXa3BJ0gi6FRXrKC3KtWeCm7y9TRCrarLYkiIrfNhQKRMeYngf8VmDt/vAz8Ndd1/+6LPpfrug2+11ThXWPMbwP+Z+B//JzvrQP1Z+p48eJvE8fgpiwK1im7p0ssr79NbfWSelQbQ3xojHBqGmONUsonqRb9ZA8v5+m7JRhxGIjUiZc3Ca9+F+/DtzQDSK6fMTB1l+zcII/GXL6dOORD7wE38OjkrRBygiyGxnjJBHipWual7DaTmSdYrhqkiIj0g4s0Vfg/OAtDf4PvnfX5j4C/aoyZdF33z33Jmgzff05IzpmATTvuknMzbGcesbL+Dq3lxqU8t+3xkhydJBCdoNMZppBNUKs51PYu5em75mkHuFhuhdDj19UCW7rC+P20FibZm47ywXCNr0e2OLD3gBv+f7Ab6Hvhx8/L1QovnWwxmVnCoPAjItKvLrJC9NPA/+C67j955tq/NMZ8xFlIeu5AZIz5P4GvcdYTNgL818DvBf7gBeq6VUzEoRVuUyJHprTF1t5DMusbl/b8gUiM+MgMHv8dGvUB8icRigWL4g2eAWTZhlTKJmFliR0vEXjwLZz9jW6XJX3IDKQpL9xhbdzDdwfyfCuwSd2oG+F1U/gREZHncZFAZAPvfs719y7wfEPAP+KsbXce+Aj4g67r/rsL1HUzGTAxD41gg0Iny1F+g82dj8ivH13iPc63vyUnsexRysUU5XyA08zl3aIbghGHdKRBvLZLaOsD/B+/iqlXu12W9Bnj99OaG+doMsaD4Sbfju2z5DkB1IzjOn165scEeLla5aWTTSaPte1NRER+uIsEol/lbJXoT33m+k8B//hFnsh13Z+8wP1vJOOxIGrT9DWpuEUK9WOO8zts731CZe1yl2Ucr4/k6DT+yF3anWGK2fjZ9rcb3C3asg3JlE3SzhE9eULg8Rt4NABVusDcHSM/N8TqmM13k6e8HtimYda6XVZfCTiBT8/8vFyr8tLJNlM68yMiIhd00S5zP2mM+QPAd84f/3bgLvAPjTGfdoFzXfezoelWcy0Xk/TQ8reoUqLQOOGksMthZo2T7NU1wwslUsQGp3F8Y9RrAxSOwxTyhkL+ym555Z6u/sRqe4R37uP7+FWs6iU1jBB5TiYeoz53h73xEB8OVvhmZJd9+xC44d1FbhC/7WM+NMbLVoiXazVezu6cd3tb6nZpIiJyS1wkEH0FeP/885nzPzPnH1955vu+TCvuG+mdw6/x4L2vX+k9jGWRGJkglJgAM0Ipnzjr/naJO+yum2UbUmmLhDklerJMYOkNPFt6sSPXy/h8tGfHyUzGeTTS5o3oIfd9h5xNBpDr4LE8zIfv8LIdPg8/e5rzIyIiV+4ig1l/31UUIv8+j99PbPAu/sgIlj1Aox6ndBqmUrGpVLpd3cWFog7pcJ1YdYfw5gf4Hryusz9yvSwLM3GH0+k0a6M2bydPeSOwTd2sd7uyvuFYDnOhMV5yorxUb/Dy6R7zh8t42qvdLk1ERPrMlx3Meoezuay7l1RPfzKGSGqQcGIMT2CITidJpRSjnPdRKhpKxW4XeHG2Y0ilLBImS/R4icDD13D2dN5CrpcZGqAyO8rWHR8fpst8O7zDsaW219fFMQ6z4fPw02jy8uk+8wdP8Lb1d4GIiHTfReYQWZy11v7TQPj8WhH4K8BXXdftXGqFt4gvGCKUGMAfTmN7ExgTo1GPUcqFaTZsTo+///tv4tjZcMwhFaoTq2wT3nwf34M3MI1at8uSPmIiERrzd9kfD/PJYI3XogesOlngtNul9QXHOEyHRnnZEzsLP7kD5g+e4Gsp/IiISG+6yArRV4GfBH4OeIOz1+2/E/gLgB/4s5dV3E1jLEM4mSYYG8AbSGE5cdxOhEYjTKXop1nzUKlwo7e7PcvxWqSShgRZIpklAo+0+iPX6+m5n+PJOEvDbd6MZXjfu49rnnS7tL7gtbzMhka550S412hyL3fIwsGSwo+IiNwoFwlEPw78Cdd1/+Uz1+4bY3aBX6aPA5ET/AO03N9EIcetG0FiWYZEyibhFIkU1gmtv49n6R1Mu9Xt0qRfOA7u9F1Op1KsDsM7iVPe9O/Q0LmfaxFwAiwER7lnBblXr3PvvOGBp6OBsyIicrNdJBAl4XPHfD8+/1r/cm9JYz0D0biHZKBKtLJDePs+3odvqu21XB/Lgokx8tMDrI/YvJfM80Zwh5LZBra7Xd2tl/DGmA8Mcc/4WayWuHeyzTt0v3gAACAASURBVOTxMpZaXYuIyC10kUB0H/gZ4Gc/c/1nzr8mN0wo6pAMN4g1DgnvP8T36A3srOasyDUxBjM+RmFqgK1RDx+mirwa3OHU2gdu8DThG8BgGA+NMO9NsNg2LJZyLByvM5T/GPi42+WJiIhci4sEoj8D/GtjzO8H3uJs3tDv4Gww6x+6xNrkCgTDDslIi1jriNDRYwKP3sI+2up2WdIvjMHcGaU4PcDWqJf7ySKvhfc4tg6Ag25Xd6v5bR9zoTHm7RCLjSaL+SPmj1YI1je7XZqIiEhXXWQO0beNMQvAnwQWOWuq8GvAL7uuqx62PcQftEnGOsQ7x4QyTwgsfQdnV/v95fqYsRFKM0NsjXr5KF3mteAuR/YhoBXIqzToT7PgH2ABh4VKiYXsDhPHq1iuBpyKiIh81oXmEJ3PHerb5gm9yOu3ScVdYu4J4ZMVAstv49l82O2ypI+Y4UHKMyPsjPn4KF3m1fAuB3YGyHS7tFvLY3mYCY0y70RZaLZZKJ2wcLhKvKJVXxERkef13IHIGBME/jLwnwEe4OvAz7que/wDf1AuncdnkUxAnByR7Cr+1XfwrH2EuS1NHaTnWekUldlR9u4E+HigyuvhfTadLJDtdmm3VswbZTEwzILxsVirspDdYyqziqez2u3SREREbrQXWSH6i8AfB/4xUAP+G+BvAX/s8ssSOJvzE41aRLw1ws0sgdwW/q1P8Cy/j+m0u12e9AkTCdOYH2d/PMyDwTqvRfZZ8WSBfLdLu5UMhrHgEIu+JAtti8VynsXjDYZznwCfdLs8ERGRW+dFAtGPAT/puu7/A2CM+VXgDWOM7bquXp1/CYGwQzTcIWKVCFaOCByv4936BGd7Sas+cr08HtzZcY4nEyyNuLwVz/Cud0+DTq+Iz/YxGxplwQ4z32yxmM+wcLRCuKZGByIiItflRQLRXeC1pw9c133bGNMCRtFgkC9k2YZg2CHk7xCw6/jbJXy1U7ylQzwnO3g2H2CfHnW7TOlH5+2u8zODrI3avJvM8Wpwm5rZBPSC/LIlfQkWA4Ms4GWhWmHhdJepo1VsNToQERHpqhcJRDbQ+My11gs+x602ZB3gi6/jLRziye7gHK5jH2xqlUd6golGqS/cZXc8xP3BKt+IbHNgq931ZXOMw0RomHlPnIWWy0LplMXMOumixrSJiIj0ohcJMwb4B8aY+jPX/MDfNsaUn15wXffHLqu4myb58OvY//yfdbsMEbBtmL7LyXSapVGXN+IZ3vXt4Zqlbld2q4wEBpjzpZnDYbZaYS53wHRmFU97rduliYiIyHN6kUD0K59z7VcvqxARuTgrnaI8P8b2XT/vpYt8I7xN3toBdrpd2q0Q80aZCwwxZwLMNurMF46ZzawSrqm9tYiIyE333IHIdd2fuMpCROT5GL+f1twER1MxHg41eS12wENPBnV9+/LCnhAzgWFm7SCzzTYzpSxzx5uki+rwJiIiclvp/I9ILztvfJCbHWRtzOa7iVNeD2zTMJo982UEbD/ToRFm7TCzrTaz5TyzJ1sM5x4Bj7pdnoiIiFwjBSKRHvK08cHOxFnjg1ciWxxZanxwUT7bx1RwmBknwmzbZbZcZCa7xZ3sMga1EhcREREFIpHu+Wzjg8TTmT9qfPCiHMthMjjMrCfGTNswWykym9vj7vGa2lqLiIjID6RAJHJNTDJBdeEOW+MBNT64oLPgM8K0J8psx2K6WmT29IDx43U8HXV2ExERkRenQCRyFWwbd2ac49k0j0bavBo/4CPvETqf8nw8loeJ4DAznigzHYuZSpHZ3D7jx+s4Cj4iIiJyiRSIRC6BiceoLY6frf4MlngltEXe2ga2u11aT/PZPiaDQ0w7UWbaMFMtMp3bZ/x4A6ejxhEiIiK9yDU2ri9K2xulER4l1O2CviQFIpEXZdswdZeTmbOzP68ljnjPt49Wf75YwAkwFRhixgkz3XKZqRSYOd3lTnYVS2d8RERErpXrDdHxRml5ojQ9Yep2mKodpmxClE2QvBui0Alw2glw0vZz3PRx1PBz2PCyX/dx0vBA9ey54iUPH3b31/nSFIhEfggrnaQ8d4etcT8fDJT4ZmibU539+VxBJ8h0cIgZO8xsq8N0OcdsdpeR0ycY1CxCRETky3IdP643QssboemJ0rBD1OwwFROibEIUCVJwA+Q6AbJtPyctP0cNP0dNHwf1s0DTrJlu/xo9RYFI5BnG66U9N8HRVJyHwy1ejR3w0JsBHna7tJ4ScALMBIeZscPMtNrMlAvMZncYOV3C8Ljb5YmIiPQk1/KcbzWL0PKEadjhszBjhamY4HmYCZJzA5y2nq7OnIeZ2lmYKdesbv8at44CkfQ1c3eUwuwQ62MObydzvBrcpmbWu11Wz3Ash6ngKHOeKHNtmC/lmMnuMKoVHxER6TOu7cX1noWZpidMwwlTs8JUrRAVE6REiIIbIN8JcNrxk237yTT9ZJpeDus+9ute8jUHKt3+TeSzFIikb5hYlPr8OHvjQe4PVvlWZJdd+wg46nZpPWEkMMCcL80cDnPVCnOne0xl1tTOWkREbjzXG6LjidD2Rmg44U+3mVWtEGUClM63meU7AU7bZ2HmpOkj0/RxUPexX/dQrDlQ7vZvIldBgUhuJ48Hd3ac46kkj0c6vBk/4j3vPmg7FwEnwFxwlAU7yEKjyXw+w2xmjUhtq9uliYiIfB/XcnC9ETreCE1PhKYTOmsAYIWomuBZkCFIoeMn/+mZGR/HTR+HDR+HdQ9HDZ2ZkR9MgUhuPseB6bucTiZZH7Z4P57n9cA2FWsT2Ox2dV01FEiz4BtgwXVYqJZYONlm/GQZy9V2NxERuVrfd17GCVP3RD53i1mu4/+0AcCzW8wO615OtcVMroECkdwsHg/u9F1OJ5KsDxveS+R4079Dpc9n/ngsD9OhERacGAvNNgvFYxaO1ohXtOojIiIv7tkw0/REdF5GbjUFIulZxuulM32X04kEa8PwXiLHG/4damYL6N8X+klfgoXAIAv4mK9VWMjuMZVZxaNBpiIicu5szkyMlidCwxOhboeonrdmLhEiT/A8zATItgIct87mzDxty6yVGeknCkTSE0wwSGvmDifjMVYGO7wXP+W7vl0apn+3vTnGYTI0wrwnxkLLZaF0ykJmnXTxfrdLExGRK+QaC7xh2t4oTW+UhhM5bwAQpvQ00LgBcp0gJ+3A2ZyZ5tnQzLMGADozI/IiFIjk2plolObMGJk7YZ4Mtng7esL7/n3a9G83s5ATZD44woIV5F69zkJun7nDFbzt/v3PRETkJnMdPx1fjJY3RsMTpW6HqdgRyiZEgTB5N8jpeaA5bvk5agTYr/vYa/g4qHlwqwo0Itelq4HIGPPzwI8Bi0AVeBP4311XJ75vC5OIU58d43AsxNJAg+9Ej/jIewQsd7u0rhn0p1jwD7DoelioFrl3ss3dYw00FRHpNa6xcf1noabpjVFzYpTtKCUTpkiYUzdIthPkpB3kqOlnvx5gt+5np+Y9a9Fc6vZvICLPo9srRL8H+CXgnfNavgr8hjHmJdd11en9hjEDaWozI+yPBXiYrvFW5IglzzH06QBPg2E8NMKiN8G9FtwrnbJwtEqq9EG3SxMR6SuusXB9Mdq+BHVvjJonRtmKUjQRcoTJuiFOWiGO2gEOGkF26z52an72a16t1Ij0ga4GItd1/+Czj40xP8HZlMzfArzalaLkh3McuDtCaTzF3pCXx6kar4f32HByQK7b1XWFYxymQiPc88S512xxL3/M4uETQvX+PP8kInJVXMtDJ5Cg5U1Q88apODFKVow8YbJuhONOiKNWiP1mkN16gK2qj92al3bV6nbpItKjur1C9Fmx8z+zn/dFY4wP8D1zKXLlFfU5k0zQmBrheDTEerrDh7Ecb/v2qFj7wH63y+sKv+1jLjTGoh1isd7gpdwBc4fL+Fo67yMi8qJcX4SWP0Xdm6DqSVC0YuSsGCedKJlOiMNWiL1GkO1agM1qgP2KV93PRORS9UwgMsYY4BeB113X/eQLvu3ngT9/fVX1D+P305kYpXAnzu6gzcNEhe+GDtl0ckCx2+V1TcIbYyE4xD18LFTLLGZ3mcysYbv9ewZKROQHcT0h2oEUdV+SiidJwYqTMzGO3ShH7TB7rRDbtTCbtQBrVT/lmg35blctIv2sZwIR8DeBHwF+1w/4nl/gLDQ9FQF2rrKoW8e2MXdGKN9NczDsZSXZ4IPwCR/6DmjTv/N9DIax4BCLviSLbYvFUo7F4w2G8h8DH3e7PBGRrnEth04gSdOfPlvBcRLkrTjHboyjdoS9ZpjtRoiNWpD1SuBsfk3/vo8mIjdQTwQiY8zfAP4w8Ltd1/3CgOO6bh2oP/Nz11DdzWWGBqlPDJIZCbKeavFRNH++3e0AOOh2eV3js33MBEdYdCLMN1ss5jMsHK0Qrum8j4j0B9cJ0A6mqftSlD0pCnacU2Jk3Bj77TC7jTAbtRDrlQAbVT9uRf/eisjt1e222wb4G8AfBX6v67rr3aznpjKJOM2JYbKjYbYG4JNokXcDhxzZWb7gOFbfSPrizAcGWcTHQrXKwukuU5lVnI62vInI7eJ6Q7QCA9R9KUqeJHkrQZY4R50oe60I240Qm7UQy5UgRyWPWkKLiJzr9grRLwH/LfBHgKIxZvj8et513Wr3yupNJh6jPTZIfizKzoDF41iFtz8957PS7fK6ymf7mAoOM+tEmG25zJXzLGbWGCx81O3SREQuzPWGaQUGqPlSlD0J8laCE+IcuVH2mhG2GmHWqiGWy0FOCw4Uul2xiMjN0+1A9NPnf37rM9d/AvgH11pJDzCRCO5ImupAhHzCx1EctsN1VvwFHvuynFhloL8X0Wxjczc4xJw3zmzbYrZaYu50l/FjNToQkZvB9UVoBgaoeVOUPUnyVpwT4hyer+Rs1c9DTiVAXiFHROTKdXsO0e3flGzbmGgE4lFa0SD1iJ9K2KEUssgHXPaCDdaCJR55TziyS8B2tyvuCQbDaHCQWW+SGRxma1XmTg+Yzqzibfd3KBSR3uPaXtrBAeq+NBVviryd4IQEh26UvWaUjUaE1UqIJ5Ug+byjrmoiIj2k2ytEt8pH/2GapYEf5chb58BbYdcpcmAXaVNCm7W/2HBggFlfilm8zNRrzOYPmc6sEWyoyYGIdNfToFPzD1LypDm1U2RIsNeOs9mMsFqN8qQcZLPiwy3f/vf4RERuIwWiS/R6Osu/yH/RCCUZ8CeZ8aeZxc9cvcZMMcNMZp1wrT9bfYtI97jGohNI0QgOUfIOngedJLudOFuNGKu1MI9LITYqfgUdEZFbToFILl3cG2MmMMis5Weu0WSmcMLc8RqxioKPiFw91wnQCg1T8Q9R8KQ5NikO3ATbrTir9ShL5TCPSwFqVbvfG3GKiAgKRPIlxL0xJv1pZuwgM802s6Usc8ebpIsaZCoiV6PjT9AIDlH2DXHqpMmQYrcdZ6MZZ7ka4UEpzE7Jp13KIiLy3BSI5Aeyjc1YYJApb5wpPEzWa0wVT5g62SShFR8RuSQuBjeYoh4YpugbJGsPcEiSnXaC1XqMpUqET0ph8jkHct2uVkREbhMFIgEg6o0w6R9g0g4x2XaZrBaZyh8ycbyBR13dRORLcI1NJzhALTBE0TvIiZ3mgBTbrQTr9SiPKmEelMKUs3a3SxURkT6kQNRHvJaXu8FBJj1RJjo2k406k8UTJrJbJMta7RGRF3d2XmeIqm+AgneAE5Ni302y1YqzUovxqBzmcTlEs6rGBCIi0psUiG4Zg2E4kGbCl2DS+Jlstpgo55jM7TF6uoblrnS7RBG5AZ6u6tQDQxS9aXJ2miMS7LYTbDYjrFSjPCwF2S35dV5HRERuNAWiG+psi9sgk3aAiTZM1kpM5I6YyG7ib2p+j4h8PtcTpBUYoOYfoORJcWolyRDnoB1juxllrRZmuRJireKjXbW6Xa6IiMiVUyDqQR7Lw6A/yaAnwoDlY9C1GWq3GWhUGS3nmcxukShvAQ+6XaqI9AAXgxtI0QikqXjTFJwkWZPkyI2x34qy2YiwXguxVA5xUPRCsdsVi4iI9A4FomsQcAJEnBARx0/Y8hGxPESMQwRDqu0y2GoyWCszVM4xUDwkUc5iWO122SLSZWfb1tLUA4OUvQPk7CQZkhx0Ymw3Y6zVw6xWgiyXg9RrFpx2u2IREZGbR4HoEv13LR9/2B0iUi8TbpSJVAuEa0WcTqvbpYlID3kadBr+AUreAXJOihMS7HXinwadpXKY5bJf29ZERESumALRJVrM7cPGO90uQ0S6xLU8Z40I/CkqnhQ5J8UxSfY/XdGJ8KQcYrkSVNc1ERGRHqFAJCLyA5yFnDQNX4qKN0XBSZAlTsaNsd+Ost0Is1ELs1IJsF314VYUdERERG4SBSIR6TuuN0wrkKbuS1F2EhTsBFliZNwo+60wO40IG7Ugq5UgOxUfVLpdsYiIiFwVBSIRuRVcX4xmIE3Nl6LkJMlbcU6IcdSJstuMstUIsV4NsVwJkC84UOh2xSIiItILFIhEpCe5xsYNJGn401S9SUpOgpyJcUyco3aEvVaYzXqYjWqQ5UqAcs2GfLerFhERkZtGgUhEro3r+GkHUjR8acreJEUrzqmJk3GjHLSj7DTDbNVCrFYCbFQ1GFRERESungKRiHwpru2lE0hT96cpe1LknSRZ4hx2Yuy1omw1wmzUQqxUAhyWvFDqdsUiIiIi36NAJCKfy7V9tENDVP2DFDwDZK0khyTZbcXYbkRYr4VYqQTZqvhwy+qsJiIiIjeTApFIH3J9UeqhUcq+IU6dNBlS7HXibDRjrFQjPC6FWC8HoNztSkVERESulgKRyC3jWh7a4REqgWFyniGOTJrtToq1ZoKlSpSPihEO8l41IBARERFBgUjkxukEUtSDIxR8wxzbA+yTZrOZYKkW50E5wuNSgHZFzQhEREREnocCkUgPcS0PrfAo5eAop54hDhhgu51kpRHnUSXGR8Uw+VMHTrtdqYiIiMjtoEAkco1cx08zPErZP8KJZ5h9BlhvpViqJfioFOVhKajVHREREZFrpEAkcolcY9MOj1AO3uHEM8KeGWStleZhLcn9YozH5QBuSR3ZRERERHqFApHIC+oE01RDdzj1jXJohtjspHlcT3K/lODDQpi6homKiIiI3BgKRCKf0fEnqIXvkPeNcGQPsdUeYKWZ5ONynA8KUU6zDmS7XaWIiIiIXAYFIuk7ri9GLXyHwnng2XEHWGmkeFCN834hylHOA7luVykiIiIi10GBSG4d1xejHhqh4B8jYw+y4w6w2kzxoJLgg2KEvbxPM3hEREREBFAgkhvG9QRphkYo+4fJOQMcmgF22klWmzGWKjE+LobJ5D0KPCIiIiLyXBSIpGe4jp9WaISKf4icZ5CMlWa3nWCjmWCpGuWTUpitoh+K3a5URERERG4LBSK5Fq7loR0eoRIYJucZImPS7LoJNpsJlipRHpYjrJX8UOp2pSIiIiLSTxSI5EtzMXSCaerBUQreQY7tQfbcFJutBE9qMT4pRXlS9mvgqIiIiIj0HAUi+YFcb5hmcJiKf4CCk+bEJDlw4+y0YqzXoyxXwjwshyhnbbWiFhEREZEbR4GoT7m+KM3AIFVfmoInRdZKctRJsNuOsVkPs1KL8LgUIlPwQKHb1YqIiIiIXA0Folum40/QDAxS8aXJO2dB57ATZ7cVY7MRZrkS5lE5RD7vqBObiIiIiPS9rgYiY8zvBv434LcAI8AfdV33n3ezpl7jOn5cb5i2J0LTE6bmxCg4KU5MkkM3xk4rzno9zHIlwlI5QDHnaKioiIiIiMhz6vYKUQi4D/x94P/rci1f2kbwN9G5+2O0sehg08Y6/9yihU37mWtnHzYl10u+HeC07eek5eOk6eeo6SFT93LU8FGuqRGBiIiIiMhV6Wogcl33a8DXAIwx3SzlUvzN/O/g/10e73YZIiIiIiLynLq9QvRCjDE+wPfMpUi3ahERERERkZvvpu3H+nnOWgE8/djpbjkiIiIiInKT3bRA9AtA7JmPO90tR0REREREbrIbtWXOdd06UH/6+DacOxIRERERke65aStEIiIiIiIil6bbc4jCwOwzl6aMMT8KZF3X3epSWSIiIiIi0ie6vWXutwLffObxL57/+SvAH7/2akREREREpK90ew7RtwAdBBIRERERka7QGSIREREREelbCkQiIiIiItK3FIhERERERKRvKRCJiIiIiEjfUiASEREREZG+pUAkIiIiIiJ9S4FIRERERET6lgKRiIiIiIj0LQUiERERERHpWwpEIiIiIiLStxSIRERERESkbykQiYiIiIhI31IgEhERERGRvqVAJCIiIiIifUuBSERERERE+pYCkYiIiIiI9C0FIhERERER6VsKRCIiIiIi0rcUiEREREREpG8pEImIiIiISN9SIBIRERERkb6lQCQiIiIiIn1LgUhERERERPqWApGIiIiIiPQtBSIREREREelbCkQiIiIiItK3FIhERERERKRvKRCJiIiIiEjfUiASEREREZG+pUAkIiIiIiJ9S4FIRERERET6lgKRiIiIiIj0LQUiERERERHpWwpEIiIiIiLStxSIRERERESkbykQiYiIiIhI31IgEhERERGRvtUTgcgY8yeNMevGmJox5j1jzH/c7ZpEREREROT263ogMsb8V8BfA74K/GbgNeBrxpjxrhYmIiIiIiK3ntPtAoA/Bfw913X/7vnj/8UY858APw38/LPfaIzxAb5nLkUACoXCddT5Q9UrJTr1SrfLEBERERG5Fm3L6ZnX4hetw7iue8mlvMDNjfECFeCPua77z565/teBH3Vd9/d85vv/AvDnr7VIERERERG5Se64rrv7vN/c7RWiNGADh5+5fggMf873/wLwi5+5lgSy/3979x8jR1nHcfz94UcrP8svC0VsqgVqULQEUCsV8QKIRqWENkVNFcGYiEqCAcSoQIMREEERSCBNFa1BwahNixEbaiqSgrGFooQDIlERKz9apJRie7R8/eN5tjcMe9e9293u3s7nlUz2buaZeZ657z63+8zzzDOtL1pl7QM8BRwGbOxwWay9HOtqcbyrxfGuDse6WhzvHdsHWDuSHTrdIKopd1OpzjoiYguwpbS6O/roeoSk2o8bI8J/2x7mWFeL410tjnd1ONbV4ng3ZMR/l05PqrAO2Mbre4Mm8vpeIzMzMzMzs5bqaIMoIgaA1cAppU2nACt3fonMzMzMzKxKumHI3HXAIkmrgPuAzwOTgZs7Wqrq2gLM5/VDE633ONbV4nhXi+NdHY51tTjebdDRWea2F0I6D7gYmAQ8DFwQEfd0tlRmZmZmZtbruqJBZGZmZmZm1gmdnlTBzMzMzMysY9wgMjMzMzOzynKDyMzMzMzMKssNIjMzMzMzqyw3iHqQpBMlLZW0VlJImlXafrCkW/P2lyXdJemIOseZIen3kjZJekHSCkl71Ek3XtKanNf0dp6bvVazsZY0Je9Xb5lTJ78DJT2Vt++3M87RBrWibks6RNIiSU/nuv2ApNlD5Oe63UEtivdUSb+W9JykFyXdIengIfJzvDtE0tck/VnSRknPSlosaVopzXhJN0hal+vuEkmHldJMzu+ZTTndDySNGyLPEyRtlbSmnedmr9XCWF8vabWkLTuKoaTDc34vtOOceoEbRL1pL+Ah4EvlDZIELAbeCpwOHAP8E7hb0l6FdDOAu4BlwLuB44EbgVfr5PcdYG1rT8Ea1Gys/0Wa7r64XAZsAn5bJ7+FwF9aewo2Ak3XbWARMA34OHA08CvgdknH1MnPdbuzmop3fl0GBNAHnACMA5ZKqvf573h3zgeAm4D3kh5OvxuwrFR3vw+cAZwFzAT2Bu6UtCtAfv0N6X0zM6c7E7i2nJmkCcBPgOVtOh8bWtOxzgT8ELh9uMwk7Q78DPhjq06gJ0WElx5eSB+Eswq/H5nXvb2wbldgPfC5wrr7gSsaOP6HgX7gqHzc6Z0+56ouo411neM8CCyss/4LwArSF6sA9uv0OVd5aaJuvwTMKx1rPXBuaZ3rdhcto4k3cCqwDdi3kGb/vN/Jjnf3LsAbcxxOzL9PAAaAuYU0h+b4fqgQw23AoYU0ZwGbi++BvP7nwBXA5cCaTp9vlZfRxLq0/7AxBK4mXQg7G3ih0+fbrYt7iKpnfH7dXFsREdtIlW8mgKSJwHuAZyWtlPSMpD9Imlk8UB52sQCYB7y8MwpvI7LDWJdJOhaYTuoJKq4/CrgU+DT1ewmt8xqN973AXEkHSNpF0ll53xW1BK7bY0Ij8R5P+qJVfKL9ZlId3v6ecLy70oT8+nx+PRbYndTjB0BErCU9zP59edUM4OG8vuZ3pPfBsbUVkj4LTAXmt6XkNlKjiXVDJPUBc4AvNl/M3uYGUfU8ShpWcaWk/SWNk3QJcAhpuBSkIRiQrjosAE4DHgCW18an5+EatwI3R8SqnVd8G4FGYl12LtAfEStrKySNJ3W3XxQRT7a70DZqjcZ7LmmIxnrSF+VbgDMi4glw3R5DGon3/aThr1dL2jMPybmG9Nk/CRzvbpRjch1wb0Q8nFcfAgxExH9LyZ/J22ppniluzOkHamnyZ/hVwKciYmt7zsAa1USsGzn2gaS6fXZEvNiC4vY0N4gqJiJeIY0pPpJ0NeJl4CTS/SLbcrLa++KWiPhRRDwYERcAjwHn5G1fBvYFrtxJRbcRajDW2ylNmPFJSr1DpBj3R8RP21lea84I4v0t0rCpk4HjSB/Gv5B0dN7uuj0GNBLviHiOdHX4Y6ShkhtIV6MfYPA94Xh3nxuBdwKfaCCtSL2ANTFUmnz/yW3AZRHxeNOltFZoJtY7sgC4LSLuGU3BqsYNogqKiNURMR3YD5gUEacBBwJ/z0n+k18fKe3aD0zOP/eRbgjcImkrYl3oNAAAA1RJREFU8Le8fpWkH7et8DYiDcS6aDawJ+lG26I+YE6ejWgrgzfhrpPkIRddZEfxljSVdIP+ORGxPCIeioj5wCoGh1S4bo8RjdTviFgWEVOBicBBETEPeFMhjePdRSTdQJrw5IMR8VRh09PAOEn7l3aZyGCv0NOUehBy+t1zmn1IF0FuLPw/vxR4V/69r+UnZENqMtaN6AMuLMR6ITAh/37ODvatnN06XQDrnIjYANu70I8Dvpk3/YM009C00i5HMjjz2PnANwrbDiWNVZ4L/Kk9JbbRGibWRecCS/JV5aIzgeJ068eTZrZ5P/BE60trzRom3nvm1/J9YNsYvEDmuj3GNFK/I2JdTtNH+mK1JG9yvLtAHjp1A2lmsZMionzRajXwCmlWsjvyPpOAdwAX5zT3AV+XNCkiahc2TyUNjV1N6iU8mtc6j/TFeTb1L5RZi7Uo1o2YQZpopeZ04Kuk+5D+ParC9zA3iHqQpL2Bwwur3qL0TInnI+JJpefLPAc8SfrneD2wOCKWAURESLoGmC/pIWAN8BngbaR/mpTvJZH0Uv7xidKVDmujZmNdOM7hwInAR8p51O4tKaQ9KP/YHxF+psFO1IJ4P0rqAbhF0oWk+4hmkT54Pwqu292kFfU730Dfn9PNyGm+FxGPgePdRW4iDVk+HdgoqdbTsyEi/hcRGyQtBK6VtJ40TPK7wF+Bu3PaZaSRHYskXQQckNMsKNxDUrtPBQBJzwKbC/evWPu1Ita1z+29Sb2Ce2jw2WGPRMRARPQXM5V0HPCqYz2ETk9z56X1C2kcedRZbs3bzyc9f2aAdFPuFcC4Ose5JKfbBKwEZg6T5xQ8VetYjvW3c7pdRpCnp90eg/EGjgB+SRp6sYn0nJt5w+Tpuj22430VaQjOAPA48BVAjnd3LUPEOUg3xNfSvIHUs7CedM/YUuDNpeNMBu7M29fn9OOHyfdyPO32WI31iiGOM2WIfM/G024PuSj/kczMzMzMzCrHkyqYmZmZmVlluUFkZmZmZmaV5QaRmZmZmZlVlhtEZmZmZmZWWW4QmZmZmZlZZblBZGZmZmZmleUGkZmZmZmZVZYbRGZmZmZmVlluEJmZmZmZWWW5QWRmZmZmZpXlBpGZmZmZmVXW/wE5O5e0BsRxRgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.clf()\n", - "plt.figure(figsize=(10, 5), dpi=100)\n", - "plt.stackplot(population.index, population.values.T / 1e9)\n", - "plt.legend(population.columns, loc='upper left')\n", - "plt.ylabel('Population count (B)')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Stacked bar plot with plotly" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Stacked area plots (with cumulated values computed depending on\n", - "selected legends) are\n", - "[on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For\n", - "now we just do a stacked bar plot." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "" - ], - "text/vnd.plotly.v1+html": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import plotly.offline as offline\n", - "import plotly.graph_objs as go\n", - "\n", - "offline.init_notebook_mode()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "data": [ - { - "name": "East Asia & Pacific", - "type": "bar", - "uid": "7fb5938a-ae8e-11e8-acff-2c44fd283bc0", - "x": [ - "1960-01-01", - "1961-01-01", - "1962-01-01", - "1963-01-01", - "1964-01-01", - "1965-01-01", - "1966-01-01", - "1967-01-01", - "1968-01-01", - "1969-01-01", - "1970-01-01", - "1971-01-01", - "1972-01-01", - "1973-01-01", - "1974-01-01", - "1975-01-01", - "1976-01-01", - "1977-01-01", - "1978-01-01", - "1979-01-01", - "1980-01-01", - "1981-01-01", - "1982-01-01", - "1983-01-01", - "1984-01-01", - "1985-01-01", - "1986-01-01", - "1987-01-01", - "1988-01-01", - "1989-01-01", - "1990-01-01", - "1991-01-01", - "1992-01-01", - "1993-01-01", - "1994-01-01", - "1995-01-01", - "1996-01-01", - "1997-01-01", - "1998-01-01", - "1999-01-01", - "2000-01-01", - "2001-01-01", - "2002-01-01", - "2003-01-01", - "2004-01-01", - "2005-01-01", - "2006-01-01", - "2007-01-01", - "2008-01-01", - "2009-01-01", - "2010-01-01", - "2011-01-01", - "2012-01-01", - "2013-01-01", - "2014-01-01", - "2015-01-01", - "2016-01-01", - "2017-01-01" - ], - "y": [ - 1039944591, - 1043546747, - 1058028199, - 1083802299, - 1109204182, - 1135650895, - 1165517894, - 1194424326, - 1223721283, - 1256501008, - 1289258962, - 1322942750, - 1354794332, - 1385052014, - 1415128313, - 1442241325, - 1466464716, - 1489361661, - 1512159741, - 1535391301, - 1558178982, - 1581806986, - 1607731269, - 1633628203, - 1658253758, - 1683448851, - 1710171170, - 1738276268, - 1766656203, - 1794408755, - 1821481246, - 1847530233, - 1871898268, - 1895356643, - 1918771287, - 1941918800, - 1964635058, - 1986799861, - 2008140141, - 2028095314, - 2047150745, - 2065521836, - 2082953527, - 2099545576, - 2115557365, - 2131363078, - 2147029631, - 2162104019, - 2177421759, - 2192352319, - 2207154641, - 2221934584, - 2237082761, - 2252311022, - 2267745366, - 2283108073, - 2298726779, - 2314364990 - ] - }, - { - "name": "South Asia", - "type": "bar", - "uid": "7fb5938b-ae8e-11e8-a575-2c44fd283bc0", - "x": [ - "1960-01-01", - "1961-01-01", - "1962-01-01", - "1963-01-01", - "1964-01-01", - "1965-01-01", - "1966-01-01", - "1967-01-01", - "1968-01-01", - "1969-01-01", - "1970-01-01", - "1971-01-01", - "1972-01-01", - "1973-01-01", - "1974-01-01", - "1975-01-01", - "1976-01-01", - "1977-01-01", - "1978-01-01", - "1979-01-01", - "1980-01-01", - "1981-01-01", - "1982-01-01", - "1983-01-01", - "1984-01-01", - "1985-01-01", - "1986-01-01", - "1987-01-01", - "1988-01-01", - "1989-01-01", - "1990-01-01", - "1991-01-01", - "1992-01-01", - "1993-01-01", - "1994-01-01", - "1995-01-01", - "1996-01-01", - "1997-01-01", - "1998-01-01", - "1999-01-01", - "2000-01-01", - "2001-01-01", - "2002-01-01", - "2003-01-01", - "2004-01-01", - "2005-01-01", - "2006-01-01", - "2007-01-01", - "2008-01-01", - "2009-01-01", - "2010-01-01", - "2011-01-01", - "2012-01-01", - "2013-01-01", - "2014-01-01", - "2015-01-01", - "2016-01-01", - "2017-01-01" - ], - "y": [ - 571835666, - 583894094, - 596413939, - 609391805, - 622822615, - 636701820, - 651036352, - 665826653, - 681054882, - 696697198, - 712740919, - 729173562, - 746012374, - 763310561, - 781140577, - 799553306, - 818560436, - 838142287, - 858277856, - 878933031, - 900076467, - 921696915, - 943781613, - 966293643, - 989188965, - 1012429641, - 1035982524, - 1059829211, - 1083963380, - 1108386444, - 1133089464, - 1158058109, - 1183253534, - 1208612942, - 1234059205, - 1259530819, - 1284978193, - 1310387887, - 1335777637, - 1361185289, - 1386625845, - 1412104373, - 1437568227, - 1462906674, - 1487975237, - 1512670560, - 1536943534, - 1560818860, - 1584359049, - 1607663899, - 1630806784, - 1653798614, - 1676615491, - 1699310450, - 1721847786, - 1744199944, - 1766393714, - 1788388852 - ] - }, - { - "name": "Sub-Saharan Africa", - "type": "bar", - "uid": "7fb5938c-ae8e-11e8-bc49-2c44fd283bc0", - "x": [ - "1960-01-01", - "1961-01-01", - "1962-01-01", - "1963-01-01", - "1964-01-01", - "1965-01-01", - "1966-01-01", - "1967-01-01", - "1968-01-01", - "1969-01-01", - "1970-01-01", - "1971-01-01", - "1972-01-01", - "1973-01-01", - "1974-01-01", - "1975-01-01", - "1976-01-01", - "1977-01-01", - "1978-01-01", - "1979-01-01", - "1980-01-01", - "1981-01-01", - "1982-01-01", - "1983-01-01", - "1984-01-01", - "1985-01-01", - "1986-01-01", - "1987-01-01", - "1988-01-01", - "1989-01-01", - "1990-01-01", - "1991-01-01", - "1992-01-01", - "1993-01-01", - "1994-01-01", - "1995-01-01", - "1996-01-01", - "1997-01-01", - "1998-01-01", - "1999-01-01", - "2000-01-01", - "2001-01-01", - "2002-01-01", - "2003-01-01", - "2004-01-01", - "2005-01-01", - "2006-01-01", - "2007-01-01", - "2008-01-01", - "2009-01-01", - "2010-01-01", - "2011-01-01", - "2012-01-01", - "2013-01-01", - "2014-01-01", - "2015-01-01", - "2016-01-01", - "2017-01-01" - ], - "y": [ - 228586005, - 234008580, - 239647139, - 245503266, - 251576403, - 257868609, - 264386171, - 271139271, - 278138996, - 285397999, - 292929074, - 300737023, - 308831549, - 317234127, - 325972033, - 335064879, - 344522341, - 354343159, - 364515830, - 375034981, - 385885281, - 397065556, - 408577033, - 420413518, - 432573431, - 445048059, - 457835414, - 470938971, - 484357710, - 498102752, - 512177101, - 526599014, - 541365685, - 556451898, - 571828603, - 587469624, - 603385639, - 619607956, - 636182577, - 653179863, - 670649638, - 688615995, - 707099850, - 726140617, - 745788118, - 766080507, - 787035792, - 808660166, - 830965556, - 853953657, - 877628367, - 901989926, - 927039875, - 952734072, - 979017918, - 1005850049, - 1033212743, - 1061107721 - ] - }, - { - "name": "Europe & Central Asia", - "type": "bar", - "uid": "7fb5938d-ae8e-11e8-ab88-2c44fd283bc0", - "x": [ - "1960-01-01", - "1961-01-01", - "1962-01-01", - "1963-01-01", - "1964-01-01", - "1965-01-01", - "1966-01-01", - "1967-01-01", - "1968-01-01", - "1969-01-01", - "1970-01-01", - "1971-01-01", - "1972-01-01", - "1973-01-01", - "1974-01-01", - "1975-01-01", - "1976-01-01", - "1977-01-01", - "1978-01-01", - "1979-01-01", - "1980-01-01", - "1981-01-01", - "1982-01-01", - "1983-01-01", - "1984-01-01", - "1985-01-01", - "1986-01-01", - "1987-01-01", - "1988-01-01", - "1989-01-01", - "1990-01-01", - "1991-01-01", - "1992-01-01", - "1993-01-01", - "1994-01-01", - "1995-01-01", - "1996-01-01", - "1997-01-01", - "1998-01-01", - "1999-01-01", - "2000-01-01", - "2001-01-01", - "2002-01-01", - "2003-01-01", - "2004-01-01", - "2005-01-01", - "2006-01-01", - "2007-01-01", - "2008-01-01", - "2009-01-01", - "2010-01-01", - "2011-01-01", - "2012-01-01", - "2013-01-01", - "2014-01-01", - "2015-01-01", - "2016-01-01", - "2017-01-01" - ], - "y": [ - 667246384, - 674972972, - 682938669, - 690962675, - 698905664, - 706609007, - 713341112, - 719879789, - 726161895, - 732317863, - 737948178, - 743607439, - 749815857, - 755867961, - 761701324, - 767332578, - 772838318, - 778094845, - 783298994, - 788525199, - 793937090, - 799215272, - 803972967, - 808524728, - 813281381, - 818146882, - 823155058, - 828213790, - 833315236, - 838462813, - 842848473, - 846178276, - 849656745, - 852762016, - 854723055, - 856352860, - 857652705, - 859112733, - 860236341, - 861380108, - 862304086, - 863615632, - 865196877, - 867457664, - 870030756, - 872661616, - 875343235, - 878465990, - 881965815, - 885591814, - 889016507, - 891098854, - 894679968, - 898881448, - 903123160, - 907426233, - 911686319, - 915545801 - ] - }, - { - "name": "Latin America & Caribbean", - "type": "bar", - "uid": "7fb5938e-ae8e-11e8-92ac-2c44fd283bc0", - "x": [ - "1960-01-01", - "1961-01-01", - "1962-01-01", - "1963-01-01", - "1964-01-01", - "1965-01-01", - "1966-01-01", - "1967-01-01", - "1968-01-01", - "1969-01-01", - "1970-01-01", - "1971-01-01", - "1972-01-01", - "1973-01-01", - "1974-01-01", - "1975-01-01", - "1976-01-01", - "1977-01-01", - "1978-01-01", - "1979-01-01", - "1980-01-01", - "1981-01-01", - "1982-01-01", - "1983-01-01", - "1984-01-01", - "1985-01-01", - "1986-01-01", - "1987-01-01", - "1988-01-01", - "1989-01-01", - "1990-01-01", - "1991-01-01", - "1992-01-01", - "1993-01-01", - "1994-01-01", - "1995-01-01", - "1996-01-01", - "1997-01-01", - "1998-01-01", - "1999-01-01", - "2000-01-01", - "2001-01-01", - "2002-01-01", - "2003-01-01", - "2004-01-01", - "2005-01-01", - "2006-01-01", - "2007-01-01", - "2008-01-01", - "2009-01-01", - "2010-01-01", - "2011-01-01", - "2012-01-01", - "2013-01-01", - "2014-01-01", - "2015-01-01", - "2016-01-01", - "2017-01-01" - ], - "y": [ - 220434662, - 226564469, - 232897323, - 239401268, - 246016368, - 252710310, - 259468669, - 266295880, - 273209036, - 280225795, - 287361389, - 294620137, - 301984430, - 309446959, - 316987646, - 324590837, - 332247800, - 339956419, - 347735305, - 355593111, - 363543431, - 371580994, - 379697683, - 387868173, - 396059351, - 404246768, - 412413602, - 420560827, - 428701267, - 436857131, - 445044474, - 453251622, - 461466819, - 469673465, - 477832467, - 485913138, - 493920488, - 501837820, - 509664957, - 517324344, - 524829251, - 532172709, - 539372044, - 546478662, - 553563090, - 560673962, - 567821716, - 574994397, - 582179826, - 589349327, - 596478519, - 603537118, - 610547919, - 617495658, - 624335544, - 631062657, - 637663890, - 644137666 - ] - }, - { - "name": "Middle East & North Africa", - "type": "bar", - "uid": "7fb5938f-ae8e-11e8-aa1c-2c44fd283bc0", - "x": [ - "1960-01-01", - "1961-01-01", - "1962-01-01", - "1963-01-01", - "1964-01-01", - "1965-01-01", - "1966-01-01", - "1967-01-01", - "1968-01-01", - "1969-01-01", - "1970-01-01", - "1971-01-01", - "1972-01-01", - "1973-01-01", - "1974-01-01", - "1975-01-01", - "1976-01-01", - "1977-01-01", - "1978-01-01", - "1979-01-01", - "1980-01-01", - "1981-01-01", - "1982-01-01", - "1983-01-01", - "1984-01-01", - "1985-01-01", - "1986-01-01", - "1987-01-01", - "1988-01-01", - "1989-01-01", - "1990-01-01", - "1991-01-01", - "1992-01-01", - "1993-01-01", - "1994-01-01", - "1995-01-01", - "1996-01-01", - "1997-01-01", - "1998-01-01", - "1999-01-01", - "2000-01-01", - "2001-01-01", - "2002-01-01", - "2003-01-01", - "2004-01-01", - "2005-01-01", - "2006-01-01", - "2007-01-01", - "2008-01-01", - "2009-01-01", - "2010-01-01", - "2011-01-01", - "2012-01-01", - "2013-01-01", - "2014-01-01", - "2015-01-01", - "2016-01-01", - "2017-01-01" - ], - "y": [ - 105488678, - 108374227, - 111385940, - 114471415, - 117671617, - 120973578, - 124374455, - 127947266, - 131566224, - 135279930, - 139083819, - 142950993, - 146887303, - 150999871, - 155259901, - 159722643, - 164407528, - 169318424, - 174493349, - 180000521, - 185843847, - 192015875, - 198499602, - 205229901, - 212102793, - 219095273, - 226161475, - 233285188, - 240367135, - 247283550, - 255989130, - 262659662, - 267020622, - 273204804, - 279279333, - 286917385, - 292934005, - 298982946, - 305001541, - 311053183, - 317129227, - 323196354, - 329289435, - 335522845, - 342046777, - 348956287, - 356287693, - 363996317, - 371999662, - 380192587, - 388376106, - 396573248, - 404783020, - 412953000, - 421030035, - 428974903, - 436738031, - 444322417 - ] - }, - { - "name": "North America", - "type": "bar", - "uid": "7fb59390-ae8e-11e8-95e7-2c44fd283bc0", - "x": [ - "1960-01-01", - "1961-01-01", - "1962-01-01", - "1963-01-01", - "1964-01-01", - "1965-01-01", - "1966-01-01", - "1967-01-01", - "1968-01-01", - "1969-01-01", - "1970-01-01", - "1971-01-01", - "1972-01-01", - "1973-01-01", - "1974-01-01", - "1975-01-01", - "1976-01-01", - "1977-01-01", - "1978-01-01", - "1979-01-01", - "1980-01-01", - "1981-01-01", - "1982-01-01", - "1983-01-01", - "1984-01-01", - "1985-01-01", - "1986-01-01", - "1987-01-01", - "1988-01-01", - "1989-01-01", - "1990-01-01", - "1991-01-01", - "1992-01-01", - "1993-01-01", - "1994-01-01", - "1995-01-01", - "1996-01-01", - "1997-01-01", - "1998-01-01", - "1999-01-01", - "2000-01-01", - "2001-01-01", - "2002-01-01", - "2003-01-01", - "2004-01-01", - "2005-01-01", - "2006-01-01", - "2007-01-01", - "2008-01-01", - "2009-01-01", - "2010-01-01", - "2011-01-01", - "2012-01-01", - "2013-01-01", - "2014-01-01", - "2015-01-01", - "2016-01-01", - "2017-01-01" - ], - "y": [ - 198624409, - 202007500, - 205198600, - 208253700, - 211262900, - 214031100, - 216659000, - 219176000, - 221503000, - 223759000, - 226431000, - 229361135, - 231943831, - 234332208, - 236681487, - 239235000, - 241606200, - 244088400, - 246674600, - 249385800, - 251872670, - 254421050, - 256921449, - 259303930, - 261583423, - 263922898, - 266394382, - 268896849, - 271452347, - 274256841, - 277473326, - 281211703, - 285092192, - 288811320, - 292297226, - 295691746, - 299126029, - 302704697, - 306162843, - 309600485, - 312993944, - 316113359, - 319050105, - 321847258, - 324864038, - 327892753, - 331014940, - 334184023, - 337405012, - 340465736, - 343408819, - 346051624, - 348808615, - 351451876, - 354223012, - 356937591, - 359735880, - 362492702 - ] - } - ], - "layout": { - "barmode": "stack", - "title": "World population" - } - }, - "text/html": [ - "
" - ], - "text/vnd.plotly.v1+html": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "bars = [go.Bar(x=population.index, y=population[zone], name=zone)\n", - " for zone in zones]\n", - "fig = go.Figure(data=bars,\n", - " layout=go.Layout(title='World population',\n", - " barmode='stack'))\n", - "offline.iplot(fig)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/tests/data/notebooks/outputs/ipynb_to_Rmd/World population.Rmd b/tests/data/notebooks/outputs/ipynb_to_Rmd/World population.Rmd deleted file mode 100644 index ec3250cc0..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_Rmd/World population.Rmd +++ /dev/null @@ -1,112 +0,0 @@ ---- -jupyter: - kernelspec: - display_name: Python 3 - language: python - name: python3 ---- - -# A quick insight at world population - -## Collecting population data - -In the below we retrieve population data from the -[World Bank](http://www.worldbank.org/) -using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -```{python} -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 -``` - -Corresponding indicator is found using search method - or, directly, -the World Bank site. - -```{python} -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use -``` - -Now we download the population data - -```{python} -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data -``` - -World is one of the countries - -```{python} -data.loc['World'] -``` - -Can we classify over continents? - -```{python} -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') -``` - -Extract zones manually (in order of increasing population) - -```{python} -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] -``` - -And extract population information (and check total is right) - -```{python} -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) -``` - -## Stacked area plot with matplotlib - -```{python} -import matplotlib.pyplot as plt -``` - -```{python} -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() -``` - -## Stacked bar plot with plotly - - -Stacked area plots (with cumulated values computed depending on -selected legends) are -[on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -now we just do a stacked bar plot. - -```{python} -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() -``` - -```{python} -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) -``` diff --git a/tests/data/notebooks/outputs/ipynb_to_hydrogen/World population.py b/tests/data/notebooks/outputs/ipynb_to_hydrogen/World population.py deleted file mode 100644 index 5fb638892..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_hydrogen/World population.py +++ /dev/null @@ -1,110 +0,0 @@ -# --- -# jupyter: -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# --- - -# %% [markdown] -# # A quick insight at world population -# -# ## Collecting population data -# -# In the below we retrieve population data from the -# [World Bank](http://www.worldbank.org/) -# using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -# %% -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 - -# %% [markdown] -# Corresponding indicator is found using search method - or, directly, -# the World Bank site. - -# %% -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use - -# %% [markdown] -# Now we download the population data - -# %% -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data - -# %% [markdown] -# World is one of the countries - -# %% -data.loc['World'] - -# %% [markdown] -# Can we classify over continents? - -# %% -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') - -# %% [markdown] -# Extract zones manually (in order of increasing population) - -# %% -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] - -# %% [markdown] -# And extract population information (and check total is right) - -# %% -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) - -# %% [markdown] -# ## Stacked area plot with matplotlib - -# %% -import matplotlib.pyplot as plt - -# %% -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() - -# %% [markdown] -# ## Stacked bar plot with plotly - -# %% [markdown] -# Stacked area plots (with cumulated values computed depending on -# selected legends) are -# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -# now we just do a stacked bar plot. - -# %% -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() - -# %% -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) diff --git a/tests/data/notebooks/outputs/ipynb_to_md/World population.md b/tests/data/notebooks/outputs/ipynb_to_md/World population.md deleted file mode 100644 index 3328426b5..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_md/World population.md +++ /dev/null @@ -1,112 +0,0 @@ ---- -jupyter: - kernelspec: - display_name: Python 3 - language: python - name: python3 ---- - -# A quick insight at world population - -## Collecting population data - -In the below we retrieve population data from the -[World Bank](http://www.worldbank.org/) -using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -```python -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 -``` - -Corresponding indicator is found using search method - or, directly, -the World Bank site. - -```python -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use -``` - -Now we download the population data - -```python -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data -``` - -World is one of the countries - -```python -data.loc['World'] -``` - -Can we classify over continents? - -```python -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') -``` - -Extract zones manually (in order of increasing population) - -```python -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] -``` - -And extract population information (and check total is right) - -```python -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) -``` - -## Stacked area plot with matplotlib - -```python -import matplotlib.pyplot as plt -``` - -```python -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() -``` - -## Stacked bar plot with plotly - - -Stacked area plots (with cumulated values computed depending on -selected legends) are -[on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -now we just do a stacked bar plot. - -```python -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() -``` - -```python -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) -``` diff --git a/tests/data/notebooks/outputs/ipynb_to_myst/World population.md b/tests/data/notebooks/outputs/ipynb_to_myst/World population.md deleted file mode 100644 index 5e02a225d..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_myst/World population.md +++ /dev/null @@ -1,112 +0,0 @@ ---- -kernelspec: - display_name: Python 3 - language: python - name: python3 ---- - -# A quick insight at world population - -## Collecting population data - -In the below we retrieve population data from the -[World Bank](http://www.worldbank.org/) -using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -```{code-cell} ipython3 -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 -``` - -Corresponding indicator is found using search method - or, directly, -the World Bank site. - -```{code-cell} ipython3 -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use -``` - -Now we download the population data - -```{code-cell} ipython3 -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data -``` - -World is one of the countries - -```{code-cell} ipython3 -data.loc['World'] -``` - -Can we classify over continents? - -```{code-cell} ipython3 -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') -``` - -Extract zones manually (in order of increasing population) - -```{code-cell} ipython3 -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] -``` - -And extract population information (and check total is right) - -```{code-cell} ipython3 -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) -``` - -## Stacked area plot with matplotlib - -```{code-cell} ipython3 -import matplotlib.pyplot as plt -``` - -```{code-cell} ipython3 -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() -``` - -## Stacked bar plot with plotly - -+++ - -Stacked area plots (with cumulated values computed depending on -selected legends) are -[on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -now we just do a stacked bar plot. - -```{code-cell} ipython3 -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() -``` - -```{code-cell} ipython3 -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) -``` diff --git a/tests/data/notebooks/outputs/ipynb_to_pandoc/World population.md b/tests/data/notebooks/outputs/ipynb_to_pandoc/World population.md deleted file mode 100644 index 29e7c590a..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_pandoc/World population.md +++ /dev/null @@ -1,155 +0,0 @@ ---- -jupyter: - kernelspec: - display_name: Python 3 - language: python - name: python3 - nbformat: 4 - nbformat_minor: 2 ---- - -::: {.cell .markdown} -# A quick insight at world population - -## Collecting population data - -In the below we retrieve population data from the -[World Bank](http://www.worldbank.org/) -using the [wbdata](https://github.com/OliverSherouse/wbdata) python package -::: - -::: {.cell .code} -``` python -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 -``` -::: - -::: {.cell .markdown} -Corresponding indicator is found using search method - or, directly, -the World Bank site. -::: - -::: {.cell .code} -``` python -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use -``` -::: - -::: {.cell .markdown} -Now we download the population data -::: - -::: {.cell .code} -``` python -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data -``` -::: - -::: {.cell .markdown} -World is one of the countries -::: - -::: {.cell .code} -``` python -data.loc['World'] -``` -::: - -::: {.cell .markdown} -Can we classify over continents? -::: - -::: {.cell .code} -``` python -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') -``` -::: - -::: {.cell .markdown} -Extract zones manually (in order of increasing population) -::: - -::: {.cell .code} -``` python -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] -``` -::: - -::: {.cell .markdown} -And extract population information (and check total is right) -::: - -::: {.cell .code} -``` python -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) -``` -::: - -::: {.cell .markdown} -## Stacked area plot with matplotlib -::: - -::: {.cell .code} -``` python -import matplotlib.pyplot as plt -``` -::: - -::: {.cell .code} -``` python -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() -``` -::: - -::: {.cell .markdown} -## Stacked bar plot with plotly -::: - -::: {.cell .markdown} -Stacked area plots (with cumulated values computed depending on -selected legends) are -[on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -now we just do a stacked bar plot. -::: - -::: {.cell .code} -``` python -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() -``` -::: - -::: {.cell .code} -``` python -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) -``` -::: diff --git a/tests/data/notebooks/outputs/ipynb_to_percent/World population.py b/tests/data/notebooks/outputs/ipynb_to_percent/World population.py deleted file mode 100644 index 5fb638892..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_percent/World population.py +++ /dev/null @@ -1,110 +0,0 @@ -# --- -# jupyter: -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# --- - -# %% [markdown] -# # A quick insight at world population -# -# ## Collecting population data -# -# In the below we retrieve population data from the -# [World Bank](http://www.worldbank.org/) -# using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -# %% -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 - -# %% [markdown] -# Corresponding indicator is found using search method - or, directly, -# the World Bank site. - -# %% -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use - -# %% [markdown] -# Now we download the population data - -# %% -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data - -# %% [markdown] -# World is one of the countries - -# %% -data.loc['World'] - -# %% [markdown] -# Can we classify over continents? - -# %% -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') - -# %% [markdown] -# Extract zones manually (in order of increasing population) - -# %% -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] - -# %% [markdown] -# And extract population information (and check total is right) - -# %% -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) - -# %% [markdown] -# ## Stacked area plot with matplotlib - -# %% -import matplotlib.pyplot as plt - -# %% -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() - -# %% [markdown] -# ## Stacked bar plot with plotly - -# %% [markdown] -# Stacked area plots (with cumulated values computed depending on -# selected legends) are -# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -# now we just do a stacked bar plot. - -# %% -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() - -# %% -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) diff --git a/tests/data/notebooks/outputs/ipynb_to_script/World population.py b/tests/data/notebooks/outputs/ipynb_to_script/World population.py deleted file mode 100644 index f86edd830..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_script/World population.py +++ /dev/null @@ -1,93 +0,0 @@ -# --- -# jupyter: -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# --- - -# # A quick insight at world population -# -# ## Collecting population data -# -# In the below we retrieve population data from the -# [World Bank](http://www.worldbank.org/) -# using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -# + -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 -# - - -# Corresponding indicator is found using search method - or, directly, -# the World Bank site. - -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use - -# Now we download the population data - -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data - -# World is one of the countries - -data.loc['World'] - -# Can we classify over continents? - -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') - -# Extract zones manually (in order of increasing population) - -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] - -# And extract population information (and check total is right) - -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) - -# ## Stacked area plot with matplotlib - -import matplotlib.pyplot as plt - -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() - -# ## Stacked bar plot with plotly - -# Stacked area plots (with cumulated values computed depending on -# selected legends) are -# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -# now we just do a stacked bar plot. - -# + -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() -# - - -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) diff --git a/tests/data/notebooks/outputs/ipynb_to_script_vim_folding_markers/World population.py b/tests/data/notebooks/outputs/ipynb_to_script_vim_folding_markers/World population.py deleted file mode 100644 index 455a0f213..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_script_vim_folding_markers/World population.py +++ /dev/null @@ -1,95 +0,0 @@ -# --- -# jupyter: -# jupytext: -# cell_markers: '{{{,}}}' -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# --- - -# # A quick insight at world population -# -# ## Collecting population data -# -# In the below we retrieve population data from the -# [World Bank](http://www.worldbank.org/) -# using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -# {{{ -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 -# }}} - -# Corresponding indicator is found using search method - or, directly, -# the World Bank site. - -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use - -# Now we download the population data - -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data - -# World is one of the countries - -data.loc['World'] - -# Can we classify over continents? - -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') - -# Extract zones manually (in order of increasing population) - -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] - -# And extract population information (and check total is right) - -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) - -# ## Stacked area plot with matplotlib - -import matplotlib.pyplot as plt - -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() - -# ## Stacked bar plot with plotly - -# Stacked area plots (with cumulated values computed depending on -# selected legends) are -# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -# now we just do a stacked bar plot. - -# {{{ -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() -# }}} - -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) diff --git a/tests/data/notebooks/outputs/ipynb_to_script_vscode_folding_markers/World population.py b/tests/data/notebooks/outputs/ipynb_to_script_vscode_folding_markers/World population.py deleted file mode 100644 index 5a923bbc5..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_script_vscode_folding_markers/World population.py +++ /dev/null @@ -1,95 +0,0 @@ -# --- -# jupyter: -# jupytext: -# cell_markers: region,endregion -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# --- - -# # A quick insight at world population -# -# ## Collecting population data -# -# In the below we retrieve population data from the -# [World Bank](http://www.worldbank.org/) -# using the [wbdata](https://github.com/OliverSherouse/wbdata) python package - -# region -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 -# endregion - -# Corresponding indicator is found using search method - or, directly, -# the World Bank site. - -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use - -# Now we download the population data - -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data - -# World is one of the countries - -data.loc['World'] - -# Can we classify over continents? - -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') - -# Extract zones manually (in order of increasing population) - -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] - -# And extract population information (and check total is right) - -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) - -# ## Stacked area plot with matplotlib - -import matplotlib.pyplot as plt - -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() - -# ## Stacked bar plot with plotly - -# Stacked area plots (with cumulated values computed depending on -# selected legends) are -# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -# now we just do a stacked bar plot. - -# region -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() -# endregion - -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) diff --git a/tests/data/notebooks/outputs/ipynb_to_sphinx/World population.py b/tests/data/notebooks/outputs/ipynb_to_sphinx/World population.py deleted file mode 100644 index 420b86e43..000000000 --- a/tests/data/notebooks/outputs/ipynb_to_sphinx/World population.py +++ /dev/null @@ -1,102 +0,0 @@ -# --- -# jupyter: -# kernelspec: -# display_name: Python 3 -# language: python -# name: python3 -# --- - -""" -# A quick insight at world population - -## Collecting population data - -In the below we retrieve population data from the -[World Bank](http://www.worldbank.org/) -using the [wbdata](https://github.com/OliverSherouse/wbdata) python package -""" - -import pandas as pd -import wbdata as wb - -pd.options.display.max_rows = 6 -pd.options.display.max_columns = 20 - -############################################################################### -# Corresponding indicator is found using search method - or, directly, -# the World Bank site. - -wb.search_indicators('Population, total') # SP.POP.TOTL -# wb.search_indicators('area') -# => https://data.worldbank.org/indicator is easier to use - -############################################################################### -# Now we download the population data - -indicators = {'SP.POP.TOTL': 'Population, total', - 'AG.SRF.TOTL.K2': 'Surface area (sq. km)', - 'AG.LND.TOTL.K2': 'Land area (sq. km)', - 'AG.LND.ARBL.ZS': 'Arable land (% of land area)'} -data = wb.get_dataframe(indicators, convert_date=True).sort_index() -data - -############################################################################### -# World is one of the countries - -data.loc['World'] - -############################################################################### -# Can we classify over continents? - -data.loc[(slice(None), '2017-01-01'), :]['Population, total'].dropna( -).sort_values().tail(60).index.get_level_values('country') - -############################################################################### -# Extract zones manually (in order of increasing population) - -zones = ['North America', 'Middle East & North Africa', - 'Latin America & Caribbean', 'Europe & Central Asia', - 'Sub-Saharan Africa', 'South Asia', - 'East Asia & Pacific'][::-1] - -############################################################################### -# And extract population information (and check total is right) - -population = data.loc[zones]['Population, total'].swaplevel().unstack() -population = population[zones] -assert all(data.loc['World']['Population, total'] == population.sum(axis=1)) - -############################################################################### -# ## Stacked area plot with matplotlib - -import matplotlib.pyplot as plt - -"" -plt.clf() -plt.figure(figsize=(10, 5), dpi=100) -plt.stackplot(population.index, population.values.T / 1e9) -plt.legend(population.columns, loc='upper left') -plt.ylabel('Population count (B)') -plt.show() - -############################################################################### -# ## Stacked bar plot with plotly - -############################################################################### -# Stacked area plots (with cumulated values computed depending on -# selected legends) are -# [on their way](https://github.com/plotly/plotly.js/pull/2960) at Plotly. For -# now we just do a stacked bar plot. - -import plotly.offline as offline -import plotly.graph_objs as go - -offline.init_notebook_mode() - -"" -bars = [go.Bar(x=population.index, y=population[zone], name=zone) - for zone in zones] -fig = go.Figure(data=bars, - layout=go.Layout(title='World population', - barmode='stack')) -offline.iplot(fig) diff --git a/tests/functional/contents_manager/test_contentsmanager.py b/tests/functional/contents_manager/test_contentsmanager.py index 4ce52535b..e9607d280 100644 --- a/tests/functional/contents_manager/test_contentsmanager.py +++ b/tests/functional/contents_manager/test_contentsmanager.py @@ -198,7 +198,7 @@ def test_save_load_paired_md_pandoc_notebook(nb_file, tmpdir): "nb_file", list_notebooks( "ipynb", - skip="(World|functional|Notebook with|plotly_graphs|flavors|complex_metadata|" + skip="(functional|Notebook with|plotly_graphs|flavors|complex_metadata|" "update83|raw_cell|_66|nteract|LaTeX|invalid|305|text_outputs|ir_notebook|jupyter|with_R_magic)", ), ) diff --git a/tests/integration/others/test_auto_ext.py b/tests/integration/others/test_auto_ext.py index 445bf76de..e70785ce2 100644 --- a/tests/integration/others/test_auto_ext.py +++ b/tests/integration/others/test_auto_ext.py @@ -48,7 +48,7 @@ def test_auto_from_kernelspecs_works(nb_file): @pytest.mark.parametrize( "nb_file", - list_notebooks("ipynb_R") + list_notebooks("ipynb_py", skip="(World|plotly)"), + list_notebooks("ipynb_R") + list_notebooks("ipynb_py", skip="(plotly)"), ) def test_auto_in_formats(nb_file): nb = read(nb_file) diff --git a/tests/integration/round_trip/test_mirror.py b/tests/integration/round_trip/test_mirror.py index 5a3bc1526..81c02bad8 100644 --- a/tests/integration/round_trip/test_mirror.py +++ b/tests/integration/round_trip/test_mirror.py @@ -137,7 +137,7 @@ def test_ipynb_to_pandoc(nb_file, no_jupytext_version_number): "nb_file", list_notebooks( "ipynb", - skip="(World|functional|Notebook with|plotly_graphs|flavors|complex_metadata|" + skip="(functional|Notebook with|plotly_graphs|flavors|complex_metadata|" "update83|raw_cell|_66|nteract|LaTeX|invalid|305|text_outputs|ir_notebook|jupyter|with_R_magic)", ), ) diff --git a/tests/utils.py b/tests/utils.py index fabd5e078..e2b468c29 100644 --- a/tests/utils.py +++ b/tests/utils.py @@ -28,7 +28,7 @@ def formats_with_support_for_cell_metadata(): yield f"{fmt.extension[1:]}:{fmt.format_name}" -def list_notebooks(path="ipynb", skip="World"): +def list_notebooks(path="ipynb", skip=""): """All notebooks in the directory notebooks/path, or in the package itself""" if path == "ipynb":