generated from nogibjj/rust-pytorch-gpu-template
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickstart_pytorch.py
executable file
·241 lines (194 loc) · 8.21 KB
/
quickstart_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
`Learn the Basics <intro.html>`_ ||
**Quickstart** ||
`Tensors <tensorqs_tutorial.html>`_ ||
`Datasets & DataLoaders <data_tutorial.html>`_ ||
`Transforms <transforms_tutorial.html>`_ ||
`Build Model <buildmodel_tutorial.html>`_ ||
`Autograd <autogradqs_tutorial.html>`_ ||
`Optimization <optimization_tutorial.html>`_ ||
`Save & Load Model <saveloadrun_tutorial.html>`_
Quickstart
===================
This section runs through the API for common tasks in machine learning. Refer to the links in each section to dive deeper.
Working with data
-----------------
PyTorch has two `primitives to work with data <https://pytorch.org/docs/stable/data.html>`_:
``torch.utils.data.DataLoader`` and ``torch.utils.data.Dataset``.
``Dataset`` stores the samples and their corresponding labels, and ``DataLoader`` wraps an iterable around
the ``Dataset``.
"""
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
######################################################################
# PyTorch offers domain-specific libraries such as `TorchText <https://pytorch.org/text/stable/index.html>`_,
# `TorchVision <https://pytorch.org/vision/stable/index.html>`_, and `TorchAudio <https://pytorch.org/audio/stable/index.html>`_,
# all of which include datasets. For this tutorial, we will be using a TorchVision dataset.
#
# The ``torchvision.datasets`` module contains ``Dataset`` objects for many real-world vision data like
# CIFAR, COCO (`full list here <https://pytorch.org/vision/stable/datasets.html>`_). In this tutorial, we
# use the FashionMNIST dataset. Every TorchVision ``Dataset`` includes two arguments: ``transform`` and
# ``target_transform`` to modify the samples and labels respectively.
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
######################################################################
# We pass the ``Dataset`` as an argument to ``DataLoader``. This wraps an iterable over our dataset, and supports
# automatic batching, sampling, shuffling and multiprocess data loading. Here we define a batch size of 64, i.e. each element
# in the dataloader iterable will return a batch of 64 features and labels.
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
######################################################################
# Read more about `loading data in PyTorch <data_tutorial.html>`_.
#
######################################################################
# --------------
#
################################
# Creating Models
# ------------------
# To define a neural network in PyTorch, we create a class that inherits
# from `nn.Module <https://pytorch.org/docs/stable/generated/torch.nn.Module.html>`_. We define the layers of the network
# in the ``__init__`` function and specify how data will pass through the network in the ``forward`` function. To accelerate
# operations in the neural network, we move it to the GPU if available.
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
######################################################################
# Read more about `building neural networks in PyTorch <buildmodel_tutorial.html>`_.
#
######################################################################
# --------------
#
#####################################################################
# Optimizing the Model Parameters
# ----------------------------------------
# To train a model, we need a `loss function <https://pytorch.org/docs/stable/nn.html#loss-functions>`_
# and an `optimizer <https://pytorch.org/docs/stable/optim.html>`_.
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
#######################################################################
# In a single training loop, the model makes predictions on the training dataset (fed to it in batches), and
# backpropagates the prediction error to adjust the model's parameters.
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
##############################################################################
# We also check the model's performance against the test dataset to ensure it is learning.
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
##############################################################################
# The training process is conducted over several iterations (*epochs*). During each epoch, the model learns
# parameters to make better predictions. We print the model's accuracy and loss at each epoch; we'd like to see the
# accuracy increase and the loss decrease with every epoch.
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
######################################################################
# Read more about `Training your model <optimization_tutorial.html>`_.
#
######################################################################
# --------------
#
######################################################################
# Saving Models
# -------------
# A common way to save a model is to serialize the internal state dictionary (containing the model parameters).
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
######################################################################
# Loading Models
# ----------------------------
#
# The process for loading a model includes re-creating the model structure and loading
# the state dictionary into it.
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
#############################################################
# This model can now be used to make predictions.
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
######################################################################
# Read more about `Saving & Loading your model <saveloadrun_tutorial.html>`_.
#