-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaps_WetTmean_dotplots.R
106 lines (85 loc) · 4.45 KB
/
Maps_WetTmean_dotplots.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
library(tidyr)
library(dplyr)
library(stars)
library(raster)
library(here)
library(ggplot2)
library(ggthemes)
library(zoo)
library(viridis)
library(ggbreak)
library(lemon)
library(ggpubr);library(gridExtra);library(grid);library(gtable)
rm(list=ls())
data.dir <- here::here('data/Output/Data-files//')
plot.dir <- here::here('data/Output//Plots//')
#ANNPrecip -- load .rds files
CF1.rds <- readRDS(paste0(data.dir,"WetTmeanDelta_rcp45"))
CF2.rds <- readRDS(paste0(data.dir,"WetTmeanDelta_rcp85"))
boundary <-st_read('C:/Users/arunyon/OneDrive - DOI/Documents/GIS/HAVO_Kilauea_Summit_Wet_Dry_Zones/HAVO_Kilauea_Summit_Wet_Dry_Zones.shp')
boundary <- st_transform(boundary, st_crs(CF1.rds))
CF_GCM <- data.frame(CF=c("Climate Future 1", "Climate Future 2"), scen=c("rcp45","rcp85"))
cols <- c("#9A9EE5","#E10720")
var = "TmeanF" #change to name of var in df
long.title = "average wet-season temperature (\u00B0F)" #change to be legend
delta.var<- "TmeanF"
scale="inferno"
seas="dry"
# insert topo
topo <- stack('./data/data/topo.tif')
topo_df <- as.data.frame(topo, xy = TRUE)
# Generate sample data for ts plot
df = read.csv(paste0(plot.dir,"Seasonal-delta.csv"))
df = subset(df, season == seas & CF!="Recent")
scale.min = min(c(CF1.rds$mean, CF2.rds$mean),na.rm=TRUE) #change names
scale.max = max(c(CF1.rds$mean, CF2.rds$mean),na.rm=TRUE) #change names
# ggplot
map.plot <- function(data, title,xaxis,metric,col){
ggplot() +
geom_raster(data = topo_df ,aes(x = x, y = y,alpha=topo_1), show.legend=FALSE) +
geom_stars(data = data, alpha = 0.8) +
geom_sf(data = boundary, aes(), fill = NA,colour="black") +
scale_fill_viridis(direction=1, option = scale,
limits = c(scale.min, scale.max), oob = scales::squish) +
labs(title = title) +
theme_map() +
theme(legend.position = "bottom",
legend.key.width = unit(6, "cm"),
legend.key.height = unit(.3, "cm"),
legend.justification = "center",
# plot.title=element_blank(),
plot.title=element_text(size=12,face="bold",hjust=0.5),
plot.background = element_rect(colour = col, fill=NA, size=5)) +
labs(fill = metric)
}
# CF1
cf1.plot <- map.plot(data=CF1.rds, title="Climate Future 1",metric=paste0("Average ",long.title),col=cols[1])
cf2.plot <- map.plot(data=CF2.rds, title="Climate Future 2",metric=paste0("Average ",long.title),col=cols[2])
###########################################################
##### NONE OF THESE WORK ##################################
# Merge into one plot
maps <- grid_arrange_shared_legend(cf1.plot, cf2.plot,ncol = 1, nrow = 2, position = "bottom",
top = textGrob(paste0("Change in ",long.title),
gp=gpar(fontface="bold", col="black", fontsize=16)))
################################### MONTHLY DOT PLOT ##################
dotplot <- ggplot(df, aes(x=Tmean.delta,y=zone,fill=CF)) +
geom_vline(xintercept=0, linetype="dashed", color = "black") +
geom_point(stat="identity",size=8,colour="black",aes(fill = factor(CF), shape = factor(CF))) +
theme(axis.text=element_text(size=16), #Text size for axis tick mark labels
axis.title.x=element_blank(), #Text size and alignment for x-axis label
plot.title=element_blank(),
# axis.title.y=element_text(size=16, vjust=0.5, margin=margin(t=20, r=20, b=20, l=20)), #Text size and alignment for y-axis label
# plot.title=element_text(size=20, vjust=0.5, face="bold", margin=margin(t=20, r=20, b=20, l=20)), #Text size and alignment for plot title
legend.title=element_text(size=16), #Text size of legend category labels
legend.text=element_text(size=14), #Text size of legend title
legend.position = "bottom") +
labs(title = paste0("Change in seasonal ",long.title),
x = "Change (°F)", y = "") +
scale_fill_manual(name="",values =cols) +
scale_shape_manual(name="",values = c(21,22)) +
scale_y_discrete(limits=rev)
dotplot
g <- grid.arrange(maps, dotplot,ncol = 2, widths = c(4, 4), clip = FALSE)
annotate_figure(g, top = text_grob(paste0("Change in seasonal ",long.title, "; 1990-2009 vs 2080-2099"),
face = "bold", size = 20))
ggsave(paste0(seas,"_season_",var,".png"), width = 15, height = 9, path = plot.dir,bg="white")